Math, asked by TanuSingh7, 1 month ago

Solve this question ​

Attachments:

Answers

Answered by mathdude500
7

Question :- Evaluate the following integral

\displaystyle\int\rm  {5}^{ {5}^{ {5}^{x}}}  {5}^{ {5}^{x}}{5}^{x} \: dx

 \purple{\large\underline{\sf{Solution-}}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  {5}^{ {5}^{ {5}^{x}}}  {5}^{ {5}^{x}}{5}^{x} \: dx

To evaluate this integral, we use Method of Substitution

So, Substitute

 \red{\rm :\longmapsto\: {5}^{ {5}^{ {5}^{x}}}  = y}

So, on

 \red{\rm :\longmapsto\:{5}^{ {5}^{ {5}^{x}}}log5\dfrac{d}{dx}{5}^{ {5}^{x}} = \dfrac{dy}{dx}}

\red{\rm :\longmapsto\:{5}^{ {5}^{ {5}^{x}}}{5}^{ {5}^{x}} {(log5)}^{2} \dfrac{d}{dx}{5}^{x} = \dfrac{dy}{dx}}

\red{\rm :\longmapsto\:{5}^{ {5}^{ {5}^{x}}}{5}^{ {5}^{x}}{5}^{x} {(log5)}^{3} dx = dy}

\red{\rm :\longmapsto\:{5}^{ {5}^{ {5}^{x}}}{5}^{ {5}^{x}}{5}^{x}dx = \dfrac{dy}{ {(log5)}^{3} }}

So, on substituting these values in given integral, we get

\rm :\longmapsto\:\displaystyle\int\rm {5}^{ {5}^{ {5}^{x}}}{5}^{ {5}^{x}}{5}^{x} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{dy}{ {(log5)}^{3} }

\rm \:  =  \: \dfrac{1}{ {(log5)}^{3} }\displaystyle\int\rm dy

\rm \:  =  \: \dfrac{1}{ {(log5)}^{3} } \: y \:  +  \: c

\rm \:  =  \: \dfrac{{5}^{ {5}^{ {5}^{x}}}}{ {(log5)}^{3} } \: \:  +  \: c

Hence,

 \:  \:  \:  \ \: \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \tt{ \:  \: \displaystyle\int\rm {5}^{ {5}^{ {5}^{x}}}{5}^{ {5}^{x}}{5}^{x}dx =  \: \dfrac{{5}^{ {5}^{ {5}^{x}}}}{ {(log5)}^{3} } \: \:  +  \: c \: }} \\  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by HeartCrusher
4

Question :- Evaluate the following integral

\displaystyle\int\rm  {5}^{ {5}^{ {5}^{x}}}  {5}^{ {5}^{x}}{5}^{x} \: dx

 \purple{\large\underline{\sf{Solution-}}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  {5}^{ {5}^{ {5}^{x}}}  {5}^{ {5}^{x}}{5}^{x} \: dx

To evaluate this integral, we use Method of Substitution

So, Substitute

 \red{\rm :\longmapsto\: {5}^{ {5}^{ {5}^{x}}}  = y}

So, on

 \red{\rm :\longmapsto\:{5}^{ {5}^{ {5}^{x}}}log5\dfrac{d}{dx}{5}^{ {5}^{x}} = \dfrac{dy}{dx}}

\red{\rm :\longmapsto\:{5}^{ {5}^{ {5}^{x}}}{5}^{ {5}^{x}} {(log5)}^{2} \dfrac{d}{dx}{5}^{x} = \dfrac{dy}{dx}}

\red{\rm :\longmapsto\:{5}^{ {5}^{ {5}^{x}}}{5}^{ {5}^{x}}{5}^{x} {(log5)}^{3} dx = dy}

\red{\rm :\longmapsto\:{5}^{ {5}^{ {5}^{x}}}{5}^{ {5}^{x}}{5}^{x}dx = \dfrac{dy}{ {(log5)}^{3} }}

So, on substituting these values in given integral, we get

\rm :\longmapsto\:\displaystyle\int\rm {5}^{ {5}^{ {5}^{x}}}{5}^{ {5}^{x}}{5}^{x} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{dy}{ {(log5)}^{3} }

\rm \:  =  \: \dfrac{1}{ {(log5)}^{3} }\displaystyle\int\rm dy

\rm \:  =  \: \dfrac{1}{ {(log5)}^{3} } \: y \:  +  \: c

\rm \:  =  \: \dfrac{{5}^{ {5}^{ {5}^{x}}}}{ {(log5)}^{3} } \: \:  +  \: c

Hence,

 \:  \:  \:  \ \: \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \tt{ \:  \: \displaystyle\int\rm {5}^{ {5}^{ {5}^{x}}}{5}^{ {5}^{x}}{5}^{x}dx =  \: \dfrac{{5}^{ {5}^{ {5}^{x}}}}{ {(log5)}^{3} } \: \:  +  \: c \: }} \\  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions