solve this question
Attachments:
Answers
Answered by
1
Angles of Intersecting Chords Theorem
If two chords intersect inside a circle, then the measure of the angle formed is one half the sum of the measure of the arcs intercepted by the angle and its vertical angle.

In the circle, the two chords PR¯¯¯¯¯PR¯ and QS¯¯¯¯¯QS¯intersect inside the circle.
m∠1=12(mPQ+mRS)m∠1=12(mPQ⌢+mRS⌢) and m∠2=12(mQR+mPS)m∠2=12(mQR⌢+mPS⌢)
Since vertical angles are congruent, m∠1=m∠3m∠1=m∠3 and m∠2=m∠4m∠2=m∠4.
Example:
In the circle shown, if mPQ=92°mPQ⌢=92° and mRS=110°mRS⌢=110°, then find m∠3m∠3.
Substitute.
m∠3=12(mPQ+mRS) =12(92°+110°) =12(202°) =101°m∠3=12(mPQ⌢+mRS⌢) =12(92°+110°) =12(202°) =101°
Therefore, m∠3=101°m∠3=101°.
Download our free learning tools apps and test prep books




Show More
Varsity Tutors © 2007 - 2019 All Rights Reserved
×
Angles of Intersecting Chords Theorem
If two chords intersect inside a circle, then the measure of the angle formed is one half the sum of the measure of the arcs intercepted by the angle and its vertical angle.

In the circle, the two chords PR¯¯¯¯¯PR¯ and QS¯¯¯¯¯QS¯intersect inside the circle.
m∠1=12(mPQ+mRS)m∠1=12(mPQ⌢+mRS⌢) and m∠2=12(mQR+mPS)m∠2=12(mQR⌢+mPS⌢)
Since vertical angles are congruent, m∠1=m∠3m∠1=m∠3 and m∠2=m∠4m∠2=m∠4.
Example:
In the circle shown, if mPQ=92°mPQ⌢=92° and mRS=110°mRS⌢=110°, then find m∠3m∠3.
Substitute.
m∠3=12(mPQ+mRS) =12(92°+110°) =12(202°) =101°m∠3=12(mPQ⌢+mRS⌢) =12(92°+110°) =12(202°) =101°
Therefore, m∠3=101°m∠3=101°.
If two chords intersect inside a circle, then the measure of the angle formed is one half the sum of the measure of the arcs intercepted by the angle and its vertical angle.

In the circle, the two chords PR¯¯¯¯¯PR¯ and QS¯¯¯¯¯QS¯intersect inside the circle.
m∠1=12(mPQ+mRS)m∠1=12(mPQ⌢+mRS⌢) and m∠2=12(mQR+mPS)m∠2=12(mQR⌢+mPS⌢)
Since vertical angles are congruent, m∠1=m∠3m∠1=m∠3 and m∠2=m∠4m∠2=m∠4.
Example:
In the circle shown, if mPQ=92°mPQ⌢=92° and mRS=110°mRS⌢=110°, then find m∠3m∠3.
Substitute.
m∠3=12(mPQ+mRS) =12(92°+110°) =12(202°) =101°m∠3=12(mPQ⌢+mRS⌢) =12(92°+110°) =12(202°) =101°
Therefore, m∠3=101°m∠3=101°.
Download our free learning tools apps and test prep books




Show More
Varsity Tutors © 2007 - 2019 All Rights Reserved
×
Angles of Intersecting Chords Theorem
If two chords intersect inside a circle, then the measure of the angle formed is one half the sum of the measure of the arcs intercepted by the angle and its vertical angle.

In the circle, the two chords PR¯¯¯¯¯PR¯ and QS¯¯¯¯¯QS¯intersect inside the circle.
m∠1=12(mPQ+mRS)m∠1=12(mPQ⌢+mRS⌢) and m∠2=12(mQR+mPS)m∠2=12(mQR⌢+mPS⌢)
Since vertical angles are congruent, m∠1=m∠3m∠1=m∠3 and m∠2=m∠4m∠2=m∠4.
Example:
In the circle shown, if mPQ=92°mPQ⌢=92° and mRS=110°mRS⌢=110°, then find m∠3m∠3.
Substitute.
m∠3=12(mPQ+mRS) =12(92°+110°) =12(202°) =101°m∠3=12(mPQ⌢+mRS⌢) =12(92°+110°) =12(202°) =101°
Therefore, m∠3=101°m∠3=101°.
Similar questions