Math, asked by dimagi, 1 year ago

solve this question

Attachments:

Answers

Answered by manishpoonia567
1
Angles of Intersecting Chords Theorem

If two chords intersect inside a circle, then the measure of the angle formed is one half the sum of the measure of the arcs intercepted by the angle and its vertical angle.



In the circle, the two chords PR¯¯¯¯¯PR¯ and QS¯¯¯¯¯QS¯intersect inside the circle.

m∠1=12(mPQ+mRS)m∠1=12(mPQ⌢+mRS⌢) and m∠2=12(mQR+mPS)m∠2=12(mQR⌢+mPS⌢)

Since vertical angles are congruent, m∠1=m∠3m∠1=m∠3 and m∠2=m∠4m∠2=m∠4.

Example:

In the circle shown, if mPQ=92°mPQ⌢=92° and mRS=110°mRS⌢=110°, then find m∠3m∠3.

Substitute.

m∠3=12(mPQ+mRS)           =12(92°+110°)           =12(202°)           =101°m∠3=12(mPQ⌢+mRS⌢)           =12(92°+110°)           =12(202°)           =101°

Therefore, m∠3=101°m∠3=101°.

Download our free learning tools apps and test prep books



 



 



 



Show More

Varsity Tutors © 2007 - 2019 All Rights Reserved

×

Angles of Intersecting Chords Theorem

If two chords intersect inside a circle, then the measure of the angle formed is one half the sum of the measure of the arcs intercepted by the angle and its vertical angle.



In the circle, the two chords PR¯¯¯¯¯PR¯ and QS¯¯¯¯¯QS¯intersect inside the circle.

m∠1=12(mPQ+mRS)m∠1=12(mPQ⌢+mRS⌢) and m∠2=12(mQR+mPS)m∠2=12(mQR⌢+mPS⌢)

Since vertical angles are congruent, m∠1=m∠3m∠1=m∠3 and m∠2=m∠4m∠2=m∠4.

Example:

In the circle shown, if mPQ=92°mPQ⌢=92° and mRS=110°mRS⌢=110°, then find m∠3m∠3.

Substitute.

m∠3=12(mPQ+mRS)           =12(92°+110°)           =12(202°)           =101°m∠3=12(mPQ⌢+mRS⌢)           =12(92°+110°)           =12(202°)           =101°

Therefore, m∠3=101°m∠3=101°.

Similar questions