Math, asked by Anonymous, 1 month ago

Solve this question and kindly explain the concept of insertion of n numbers between two given numbers.
Is there any formula to find the number is more than 1 numbers are inserted between two numbers in GP ?​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

m Arithmetic means are inserted between two numbers 1 and 31.

Let assume that m Arithmetic means be

\rm :\longmapsto\:A_1,A_2,A_3, -  -  -  - ,A_m

So,

\rm :\longmapsto\:1,A_1,A_2,A_3, -  -  -  - ,A_m,31 \: are \: in \: AP

Now, here

First term of an AP, a = 1

Number of terms, n = m + 2

Last term, nth term = 31

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:31 = 1 + (m + 2 - 1)d

\rm :\longmapsto\:31 - 1 = (m + 1)d

\rm :\longmapsto\:30 = (m + 1)d

\rm \implies\:d \:  =  \: \dfrac{30}{m + 1}  -  -  -  - (1)

According to statement,

\rm :\longmapsto\:\dfrac{A_7}{A_{m - 1}}  = \dfrac{5}{9}

\rm :\longmapsto\:\dfrac{a + 7d}{a + (m - 1)d}  = \dfrac{5}{9}

\rm :\longmapsto\:9a + 63d = 5a + (5m - 5)d

\rm :\longmapsto\:9a - 5a =  (5m - 5)d - 63d

\rm :\longmapsto\:4a =  (5m - 5 - 63)d

\rm :\longmapsto\:4a =  (5m - 68)d

\rm :\longmapsto\:4 \times 1=  (5m - 68) \times \dfrac{30}{m + 1}

\rm :\longmapsto\:4=  (5m - 68) \times \dfrac{30}{m + 1}

\rm :\longmapsto\:2=  (5m - 68) \times \dfrac{15}{m + 1}

\rm :\longmapsto\:2m + 2 = 75m - 1020

\rm :\longmapsto\:2m - 75m =  - 2 - 1020

\rm :\longmapsto\: - 73m =   - 1022

\rm \implies\:\boxed{ \tt{ \:  \: m \:  =  \: 14 \:  \: }}

  • Hence, Option (d) is correct

Now,

Let assume that n geometric mean inserted between two numbers a and b be

\rm :\longmapsto\:G_1,G_2,G_3, -  -  -  - ,G_n

So, that,

\rm :\longmapsto\:a,G_1,G_2,G_3, -  -  -  - ,G_n,b \: are \: in \: GP

having common ratio

\boxed{ \tt{ \:  \: r \:  =  \:  {\bigg[\dfrac{b}{a} \bigg]}^{\dfrac{1}{n + 1} } \:  \: }}

and

\rm :\longmapsto\:G_1 = ar

\rm :\longmapsto\:G_2 = a {r}^{2}

\rm :\longmapsto\:G_3 = a {r}^{3}

.

.

.

\rm :\longmapsto\:G_n = a {r}^{n}

Similar questions