solve this question....and no spamming bcoz its imp for me right now
Attachments:
![](https://hi-static.z-dn.net/files/da6/446af7a02d2266121063352fd289ce81.jpg)
Answers
Answered by
16
Note: Here I am writing theta as A.
(1)
Cos A tan A
![= \ \textgreater \ cos A * \frac{sin A}{cosA} = \ \textgreater \ cos A * \frac{sin A}{cosA}](https://tex.z-dn.net/?f=%3D+%5C+%5Ctextgreater+%5C++cos+A+%2A++%5Cfrac%7Bsin+A%7D%7BcosA%7D+)
= > sin A
(2)
sin A cot A
![= \ \textgreater \ sin A * \frac{cos A}{sinA} = \ \textgreater \ sin A * \frac{cos A}{sinA}](https://tex.z-dn.net/?f=%3D+%5C+%5Ctextgreater+%5C++sin+A+%2A++%5Cfrac%7Bcos+A%7D%7BsinA%7D+)
= > cos A
(3)
![Given : \frac{sin^2A}{cosA} + cos A Given : \frac{sin^2A}{cosA} + cos A](https://tex.z-dn.net/?f=+Given+%3A+%5Cfrac%7Bsin%5E2A%7D%7BcosA%7D+%2B+cos+A)
![= \ \textgreater \ \frac{sin^2 A + cos^2A}{cosA} = \ \textgreater \ \frac{sin^2 A + cos^2A}{cosA}](https://tex.z-dn.net/?f=%3D+%5C+%5Ctextgreater+%5C+++%5Cfrac%7Bsin%5E2+A+%2B+cos%5E2A%7D%7BcosA%7D+)
We know that sin^2 theta + cos^2 theta = 1
![= \ \textgreater \ \frac{1}{cosA} = \ \textgreater \ \frac{1}{cosA}](https://tex.z-dn.net/?f=%3D+%5C+%5Ctextgreater+%5C+++%5Cfrac%7B1%7D%7BcosA%7D+)
Hope this helps!
(1)
Cos A tan A
= > sin A
(2)
sin A cot A
= > cos A
(3)
We know that sin^2 theta + cos^2 theta = 1
Hope this helps!
abhi569:
hehehehe
Answered by
1
26 - Prove the following:
(i) cos Ф × tan Ф = sin Ф
Solution:-
LHS
___________________________
|Tan Ф =
|
____________________________
⇒ cosФ × tanФ
⇒ cosФ ×![\frac{sin}{cos} \frac{sin}{cos}](https://tex.z-dn.net/?f=+%5Cfrac%7Bsin%7D%7Bcos%7D+)
⇒ sinФ
-----------------
SinФ = sinФ
LHS = RHS
=======================================
(ii) sinФ × cotФ = cosФ
Solution:-
LHS
___________________________
| CotФ =
|
___________________________
⇒ sinФ × cotФ
⇒ sinФ ×
⇒ CosФ
---------------
CosФ = cosФ
LHS = RHS
============================
(iii)![\frac{sin^2}{cos} + cos = \frac{1}{cos} \frac{sin^2}{cos} + cos = \frac{1}{cos}](https://tex.z-dn.net/?f=+%5Cfrac%7Bsin%5E2%7D%7Bcos%7D+%2B+cos+%3D++%5Cfrac%7B1%7D%7Bcos%7D+)
Solution :-
LHS
![\frac{sin^2 + cos^2 }{cos} \frac{sin^2 + cos^2 }{cos}](https://tex.z-dn.net/?f=+%5Cfrac%7Bsin%5E2+%2B+cos%5E2+%7D%7Bcos%7D+)
____________________________
|As we know that sin²Ф + cos²Ф = 1 |
_____________________________
![\frac{sin^2 + cos^2}{cos} \frac{sin^2 + cos^2}{cos}](https://tex.z-dn.net/?f=+%5Cfrac%7Bsin%5E2+%2B+cos%5E2%7D%7Bcos%7D+)
⇒![\frac{1}{cos} \frac{1}{cos}](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Bcos%7D+)
--------------------
1/cosФ = 1/cosФ
LHS = RHS
i hope this will help you
-by ABHAY
(i) cos Ф × tan Ф = sin Ф
Solution:-
LHS
___________________________
|Tan Ф =
____________________________
⇒ cosФ × tanФ
⇒ cosФ ×
⇒ sinФ
-----------------
SinФ = sinФ
LHS = RHS
=======================================
(ii) sinФ × cotФ = cosФ
Solution:-
LHS
___________________________
| CotФ =
___________________________
⇒ sinФ × cotФ
⇒ sinФ ×
⇒ CosФ
---------------
CosФ = cosФ
LHS = RHS
============================
(iii)
Solution :-
LHS
____________________________
|As we know that sin²Ф + cos²Ф = 1 |
_____________________________
⇒
--------------------
1/cosФ = 1/cosФ
LHS = RHS
i hope this will help you
-by ABHAY
Similar questions