Math, asked by VAISHVItheBEATboxer, 1 year ago

solve this question....and no spamming bcoz its imp for me right now

Attachments:

Answers

Answered by siddhartharao77
16
Note: Here I am writing theta as A.

(1)

Cos A tan A

= \ \textgreater \  cos A *  \frac{sin A}{cosA}

= > sin A




(2)

sin A cot A

= \ \textgreater \  sin A *  \frac{cos A}{sinA}

= > cos A



(3)

 Given : \frac{sin^2A}{cosA} + cos A

= \ \textgreater \   \frac{sin^2 A + cos^2A}{cosA}

We know that sin^2 theta + cos^2 theta = 1

= \ \textgreater \   \frac{1}{cosA}





Hope this helps!

abhi569: hehehehe
VAISHVItheBEATboxer: tossed it*
abhi569: ur choice
VAISHVItheBEATboxer: marked u
siddhartharao77: Thank you..
VAISHVItheBEATboxer: if only their could be a choice in which i can mark both of them as brainliest
VAISHVItheBEATboxer: if only!!!!!
abhi569: Thanks
abhi569: (-:
VAISHVItheBEATboxer: dont mention it :-)
Answered by abhi569
1
26 - Prove the following:


(i) cos 
Ф × tan Ф = sin Ф

Solution:- 

LHS

___________________________
|Tan Ф =  \frac{Sin}{cos} |
____________________________

⇒ cosФ × tanФ

⇒ cosФ × \frac{sin}{cos}

⇒ sinФ

-----------------

SinФ = sinФ
LHS = RHS

=======================================


(ii)  sinФ × cotФ = cosФ

Solution:-

LHS
___________________________
| CotФ =  \frac{cos}{sin} |
___________________________

⇒ sinФ × cotФ

⇒ sinФ × \frac{cos}{sin}  

⇒ CosФ

---------------

CosФ = cosФ

LHS = RHS

============================

(iii)  \frac{sin^2}{cos} + cos =  \frac{1}{cos}

Solution :-

LHS

 \frac{sin^2 + cos^2 }{cos}

____________________________
|As we know that sin²Ф + cos²Ф = 1 |
_____________________________

 \frac{sin^2 + cos^2}{cos}

 \frac{1}{cos}

--------------------

1/cosФ = 1/cosФ

LHS = RHS



i hope this will help you



-by ABHAY

abhi569: thanks for choosing a brainlist answer
Similar questions