Math, asked by gohan, 1 year ago

solve this question by the method of log 

Attachments:

manitkapoor2: i can do it

Answers

Answered by manitkapoor2
2
 \sqrt{243 \sqrt{81 \sqrt[3]{3} } }= 9\sqrt{3}( \sqrt{9 \sqrt[3]{x} } )=9\sqrt{3}\sqrt{9}( 3\sqrt[6]{3})=27\sqrt{3}\sqrt[6]{3}=(3^{ \frac{1}{6}+3+\frac{1}{2}})
log_{3} (3^{\frac{1}{6]+3+\frac{1}{2}} )=log_{3} (3^ {\frac{1}{6}+3+\frac{1}{2}} )= \frac{22}{6}....(1)
log_{2} \sqrt[4]{64}=log_{2}  \sqrt[4]{ 2^6}= log_{2} 2^{ \frac{3}{2} }= \frac{3}{2}....(2)
log_{e} e^{-10}=-10
log_{2} ( \sqrt[4]{64} )+log_{e}(e^{-10})= \frac{3}{2}-10
 \frac{log_{3}(\sqrt{243 \sqrt{81 \sqrt[3]{3} } }) }{log_{2} ( \sqrt[4]{64} )+log_{e}(e^{-10})}
= \frac{\frac{22}{6}}{\frac{3}{2}-10}
= \frac{ \frac{22}{6}} { \frac{-17}{2} }= \frac{22}{(-17)(3)}= \frac{-22}{51}


manitkapoor2: wait i will just finsih it
manitkapoor2: wait i haven't finished
manitkapoor2: done but i am getting -22/51
manitkapoor2: really checked with calculator also -22/51 sure
Similar questions