Solve this question for class 10th Trigonometry
Attachments:
Answers
Answered by
1
Hi ,
Here I'm using x instead of theta .
cosx + sinx = √2 cosx ----( 1 )
Do the square of equation ( 1 ),
( cosx + sinx ) ² = ( √2 cosx )²
cos²x + sin² x + 2cosxsinx = 2cos² x
1 + 2cosxsinx = 2cos² x
2cosxsinx = 2cos²x - 1 -----( 1 )
Now ,
( cosx - sinx )²
= cos²x + sin²x - 2cosxsinx
= 1 - 2cosxsinx
= 1 - (2cos²x - 1 )
= 1 - 2cos² x + 1
= 2 - 2cos² x
= 2 ( 1 - cos² x )
= 2sin² x
Therefore ,
cosx - sinx = √ ( 2sin²x )
= √2 sinx
Hence proved .
I hope this helps you.
:)
Here I'm using x instead of theta .
cosx + sinx = √2 cosx ----( 1 )
Do the square of equation ( 1 ),
( cosx + sinx ) ² = ( √2 cosx )²
cos²x + sin² x + 2cosxsinx = 2cos² x
1 + 2cosxsinx = 2cos² x
2cosxsinx = 2cos²x - 1 -----( 1 )
Now ,
( cosx - sinx )²
= cos²x + sin²x - 2cosxsinx
= 1 - 2cosxsinx
= 1 - (2cos²x - 1 )
= 1 - 2cos² x + 1
= 2 - 2cos² x
= 2 ( 1 - cos² x )
= 2sin² x
Therefore ,
cosx - sinx = √ ( 2sin²x )
= √2 sinx
Hence proved .
I hope this helps you.
:)
Answered by
2
Please mark brainliest...
Attachments:
Keshav5318:
Please mark brainliest
Similar questions