Solve this question from algebra, and verify the answer.
Answers
GIVEN :-
- a = 1
- b = -1
- c = -2
TO FIND :-
- Multiply the Algebraic Expression.
- Verify the answer.
SOLUTION :-
➬( -5/14 abc ) (7/10 a²b²c²)
➬ ( -5/14 × 7/10 ) ( abc × a²b²c² )
➬ -1/4 a³b³c³ = R.H.S
VERIFICATION :-
➬ L.H.S = ( -5/14 abc ) (7/10 a²b²c²)
➬ [-5/14 × 1 × (-1)× (-2)] [7/10 × (1)² × (-1)² × (-2)²]
➬ [-5/14 × 2] [7/10 × 1 × 1 × 4]
➬ [-5/7] [14/5]
➬ -5/7 × 14/5
➬ -2 ---------------------(1)
___________________________________
_________________
➬ R.H.S = -1/2 a³b³c³
➬ [-1/4 × (1)³ × (-1)³ × (-2)³]
➬ [-1/4 × 8]
➬ -2 --------------------(2)
From Equation (1) and (2)
➬ L.H.S = R.H.S
HENCE VERIFIED ✔
- Multiply -5 × abc/14 by 7 × a²b²c²/10 when the value of a= 1,b= -1,c= -2
- The value of a ,b and c when they are given as 1,-1,-2
Question -5 × abc/14 by 7 × a²b²c²/10
The value of a= 1,b= -1,c= -2
-5 × abc / 14 by 7 × a²b²c² / 10
- Substitute the value of a ,b and c in the equation
-5 × (1)(-1)(-2)/14 / 7× (1)²(-1)²(-2)²/10
-5 × 2 / 14 / 7 × 4 /10
-10 /14 × 28 / 10
-5/7 × 14/5
-2
-5 × abc /14 / 7 × a²b²c² / 10
-5/14 × 7/10 (abc × a²b²c²)
Let equation be -1/4 a³b³c³
- Another equation value is -2 ( LHS )
-1/4 × (1)³(-1)³(-2)³
-1/4 × 8
-2
- LHS = RHS
- -2 = -2