solve this question : if a+b=10 and a^2+b^2=58 then find a^3+b^3
Answers
Answered by
2
a=7
b=3
7'3+3'3=343+27
=370
b=3
7'3+3'3=343+27
=370
Elwin123:
welcome
Answered by
1
a+b=10 , a^2+b^2=58
Find a^3+b^3
Formula for a^2+b^2=(a+b)^2-2ab
a+b=10 (given)
a^2+b^2=(10)^2-2ab
a^2+b^2=100-2ab
As, a^2+b^2=58 (given)
So, by putting the value, we get
58=100-2ab
100-58=2ab
42=2ab
42/2=ab
21=ab
Now, formula for a^3+b^3=(a+b)(a^2-ab+b^2)
a^3+b^3=(10)(a^2+b^2-ab)
a^3+b^3=(10)(58- (from above equation we get ab=21)SO,
a^3+b^3=(10)(58-21)
a^3+b^3=(10)(37)
a^3+b^3=370
PROBLEM SOLVED!!!!!
Similar questions