Math, asked by MAXHAR, 10 months ago

Solve this question immediately
No spam allow​

Attachments:

Answers

Answered by RISH4BH
123

\large{\underline{\underline{\red{\sf{Given:}}}}}

  • \tt{\dfrac{2}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}=2}
  • \tt{\dfrac{4}{\sqrt{x}}+\dfrac{9}{\sqrt{y}}=1}

\large{\underline{\underline{\red{\sf{To\:Find:}}}}}

  • \tt{Value\:of\:x\:and\:y.}
  • \tt{We\:have\:to\:use\: elimination\: method.}

\large{\underline{\underline{\red{\sf{Answer:}}}}}

\underline{\purple{\bf{\dag Elimination\: Method:-}}}

\tt{Here\:are\:the\:steps.}

\tt{\green{Step \:1:-}\:\:\orange{Multiply\:variable\:with\:a\:number\:to\:make\:same\: coefficients.}}

\tt{\green{Step\:2:-}\orange{Add\:or\:subtract\:numerically\:equal\: coefficients.}}

\tt{\green{Step\:3:-}\orange{Solve\: obtained\:equ^n\:in\:one\:variable.}}

\tt{\green{Step\:4:-}\orange{Substitute\:its\:value\:in\:one\:of\:equ^n.}}

\tt{\green{Step\:5:-}\orange{Solve\:to\:get\:value\:of\: second\: variable.}}

\tt{Let's\:number\:the\:equ^ns.}

\blue{\tt{\leadsto \dfrac{2}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}=2 .........(i)}}

\blue{\tt{\leadsto\dfrac{4}{\sqrt{x}}+\dfrac{9}{\sqrt{y}}=1..........(ii)}}

\pink{\sf{Multipling\:(i)\:by\:2.}}

\tt{\implies 2(\dfrac{2}{\sqrt{x}}+\dfrac{3}{\sqrt{y}})=2\times2}

\tt{\leadsto \dfrac{4}{\sqrt{x}}+\dfrac{6}{\sqrt{y}}=4 .........(iii)}

_______________________________________

\pink{\tt{Subtracting\:equ^n\:(ii)\:and\:(iii):}}

\tt{\implies\dfrac{4}{\sqrt{x}}+\dfrac{9}{\sqrt{y}}-(  \dfrac{4}{\sqrt{x}}+\dfrac{6}{\sqrt{y}})=1-4 .}

\tt{\implies \dfrac{9}{\sqrt{y}}-\dfrac{6}{\sqrt{y}}=-3  .}

\tt{\implies \dfrac{9-6}{\sqrt{y}}=-3 .}

\tt{\implies \dfrac{3}{\sqrt{y}}=-3 .}

\tt{\implies \sqrt{y} =\dfrac{-1}{1}.}

\tt{\implies y = (-1)^2.}

\underline{\boxed{\red{\bf{\mapsto y = 1}}}}

_________________________________________

\pink{\tt{Putting\:this\:value\:in\:(i).}}

\tt{\implies \dfrac{4}{\sqrt{x}}=4-6.}

\tt{\implies \dfrac{4}{\sqrt{x}}=-2.}

\tt{\implies \sqrt{x}=\dfrac{4}{-2}}

\tt{\implies \sqrt{x}=(-2)}

\tt{\implies x=(-2)^2.}

\underline{\boxed{\purple{\bf{\mapsto x= 4}}}}

\underline{\green{\tt{\underset{\red{Required\:Answer}}{\underbrace{\hookrightarrow Hence\:value\:of\:x\:is\:4\:and\:y\:is\:1.}}}}}

.

Similar questions