Math, asked by Karishma1535, 6 months ago

solve this question ... no wrong answers ​

Attachments:

Answers

Answered by Anonymous
29

QuestioN :-

\displaystyle \int \:  \sf \frac{6x + 7}{ \sqrt{(x - 5)(x - 4)} }  \: dx \:  =  ?

AnsweR :-

\displaystyle \sf \int \:  \frac{6x + 7}{ \sqrt{ (x - 5)(x - 4) } }  \: dx  \sf \:  = 6 \sqrt{ (x - 5)(x - 4)}  + 34 \: log \bigg \{  \bigg| x -  \frac{9}{2} +  \sqrt{  (x - 5)(x - 4) }   \:  \bigg|  \bigg \} + c

SolutioN :-

\displaystyle \int \:  \sf \frac{6x + 7}{ \sqrt{(x - 5)(x - 4)} }  \: dx \:  \\  \\    \int \:  \sf \frac{6x + 7}{ \sqrt{ {x}^{2} - 9x + 20 } }  \: dx \:  \\  \\  \sf \: let \: 6x + 7 =  a \bigg( \frac{d( {x}^{2} - 9x + 20) }{dx}  \bigg) + b \\  \\  \sf \: 6x + 7 = a(2x - 9) + b \\  \\  \sf \:6x + 7 =  2ax - 9a + b \\  \\  \sf \: comparing \: the \: coefficients \mapsto \\  \\  \sf \star 2a = 6 \\  \\  \sf \: a =  \frac{6}{2}  \\  \\  \sf \: a =  \frac{  { \cancel{6}} \:  \: ^{3} }{ \cancel{2}}  \\  \\  \boxed{ \huge \sf \: a = 3} \\  \\  \sf \star \:  - 9a + b = 7 \\  \\  \sf \:  - 9 \times 3 + b = 7 \\  \\  \sf \:  - 27 + b = 7 \\  \\   \sf \: b = 27 + 7 \\  \\   \boxed{ \huge \: \sf b = 34}

Now ,

\displaystyle \int \:  \sf \frac{6x + 7}{ \sqrt{( {x}^{2}  - 9x + 20)} }  \: dx \:  = \displaystyle \int \:  \sf \frac{ax + b}{ \sqrt{ {x}^{2} - 9x + 20 } }  \: dx \:   \\  \\ =   \sf \: \displaystyle \int \:  \sf \frac{3(2x - 9) + 34}{ \sqrt{ {x}^{2}  - 9x + 20} }  \: dx \:   \\  \\  =  \sf3 \int \:  \frac{2x - 9}{ \sqrt{ {x}^{2} - 9x + 20 } }   \: dx +  \int \:  \frac{34}{ \sqrt{ {x}^{2} - 9x + 20 } }   \: dx \\  \\  \sf \: now \: let \:  {x}^{2}  - 9x + 20 = t \\  \\  \sf \: (2x - 9)dx = dt \\  \\  \sf  \: so   \\  \\ \sf3 \int \:  \frac{2x - 9}{ \sqrt{ {x}^{2} - 9x + 20 } }   \: dx = 3 \int \:  \frac{dt}{ \sqrt{t} }  \\  \\  \sf \:  = 6 \sqrt{t}  + c \\  \\  \sf3 \int \:  \frac{2x - 9}{ \sqrt{ {x}^{2} - 9x + 20 } }   \: dx= 6 \sqrt{ {x}^{2}  - 9x + 20}  + c

 \sf \: and \\  \\   \sf \: \int \frac{34}{  \sqrt{ {x}^{2} - 9x + 20 }  }   \: dx \mapsto

Now convert Denominator into complete square method

 \sf {x}^{2}  - 9x + 20 \\  \\   \sf \:  =  {x}^{2}  - 2x \bigg( \frac{9}{2}  \bigg) +  \frac{81}{4}  + 20 -  \frac{81}{4}  \\  \\  \sf \:   = { \bigg(x -  \frac{9}{2}  \bigg)}^{2}  -  \bigg( { \frac{1}{2}  \bigg)}^{2}

So,

   \displaystyle \: \sf\int \:  \frac{34}{ \sqrt{ {x}^{2} - 9x + 20 } }  \: dx =  \int \:  \frac{34}{{ \big(x -  \frac{9}{2}  \big)}^{2}  -  \big( { \frac{1}{2}  \big)}^{2} }  \: dx

Now, Using the formula

  \displaystyle  \sf \: \int \:  \frac{1}{ \sqrt{ {x}^{2} -  {a}^{2}  } }   \: dx=  log( |x +  \sqrt{ {x}^{2}  -  {a}^{2} } | )  + c

  \displaystyle  \sf \: \int \:  \frac{34}{{ \big(x -  \frac{9}{2}  \big)}^{2}  -  \big( { \frac{1}{2}  \big)}^{2} }  \: dx \:  = 34 \:  log \bigg \{  \bigg| \big(x -  \frac{9}{2} \big) +  \sqrt{ { \bigg (x -  \frac{9}{2}  \bigg)}^{2} -  { \bigg( \frac{1}{2} \bigg) }^{2}  }   \bigg|  \bigg \} + c \\  \\  =  \sf34 \:  log \bigg \{  \bigg| x -  \frac{9}{2} +  \sqrt{  {x}^{2}  - 9x + 20  }   \:  \bigg|  \bigg \} + c

So Far ,

 \displaystyle \sf \int \:  \frac{6x + 7}{ \sqrt{ (x - 5)(x - 4) } }  \: dx = 6 \sqrt{ {x}^{2}  - 9x + 20}  + 34 \: log \bigg \{  \bigg| x -  \frac{9}{2} +  \sqrt{  {x}^{2}  - 9x + 20  }   \:  \bigg|  \bigg \} + c \\  \\  \sf \:  = 6 \sqrt{ (x - 5)(x - 4)}  + 34 \: log \bigg \{  \bigg| x -  \frac{9}{2} +  \sqrt{  (x - 5)(x - 4) }   \:  \bigg|  \bigg \} + c

Similar questions