Physics, asked by twilightqueenbee007, 9 months ago

solve this question of physics,(28) if known rightly then answer .... please no wrong solution..thanku​

Attachments:

Answers

Answered by CunningKing
13

Answer :-

Applying conservation of energy to the top of the track (D)and point A (as shown in the diagram)

\sf{(PE)_D+(KE)_D=(PE)_A+(KE)_A}

\sf{\therefore mg(2.4)+0=mg(1.0)+\dfrac{1}{2}mv^2+\dfrac{1}{2}I\omega^2  }\\\\\sf{=\dfrac{1}{2}mv^2 + \dfrac{1}{2}(\dfrac{2}{5}MR^2 )\dfrac{v^2}{R^2}}\\\\\sf{=\dfrac{7}{2}mv^2}

\sf{\implies mg \times 1.4=\dfrac{7}{2}mv^2}\\\\\sf{\implies \dfrac{1.4\times9.8\times10}{7}=v^2 }\\\\\sf{\implies v^2=19.6}\\\\\sf{\implies v=\sqrt{19.6}}\\\\\sf{\implies v=4.43\ m/s}

After point A, the body takes a parabolic path. The vertical motion parameters of parabolic motion will be

\sf{u_y=0}

\sf{S_y=1\ m}

\sf{a_y=9.8\ m/s^2}

\sf{t_y=?}

\sf{S_y=u_yt_y+\dfrac{1}{2}a_yt_y^2 }\\\\\displaystyle{\sf{\implies 1=0\times t_y+\frac{1}{2}\times 9.8 \times t_y^2}}\\\\\displaystyle{\sf{\implies 1=0+4.9t_y^2}}\\\\\displaystyle{\sf{\implies t_y^2=\frac{1}{4.9}}}\\\\\displaystyle{\sf{\implies t_y=\sqrt{\frac{1}{4.9} } }}

\sf{\implies t_y=0.45\ secs}

Applying this time in horizontal motion of parabolic path,

BC = 4.43 × 0.45 = 2 m

Attachments:
Answered by aadishree7667
1

twilight queen bee answer is 2m

Similar questions