solve this question please
Answers
If p(x) = 2x² - 7x + 1, then evaluate p(3) + p(½) + p(-2).
Answer: -9
Step-by-step explanation:
Given: p(x) = 2x² - 7x + 1
To find: p(3) + p(½) + p(-2)
Putting value of x as 3:
p(3) = 2(3)² - 7(3) + 1
= 2 × 9 - 21 + 1
= 18 - 21 + 1
= -2
Putting value of x as ½ :
p(½) = 2(½)² - 7(½) + 1
= 2 × ¼ - 7/2 + 1
= 2/4 - 7/2 + 1
= 0.5 - 3.5 + 1
= -2
Putting value of x as (-2) :
p(-2) = 2(-2)² - 7(2) + 1
= 2 × 4 - 14 + 1
= 8 - 14 + 1
= -5
Thus,
p(3) = -2, p(½) = -2 and p(-2) = -5
.°. p(3) + p(½) + p(-2)
= (-2) + (-2) + (-5)
= - 4 - 5
= -9
Thus, If p(x) = 2x² - 7x + 1, then p(3) + p(½) + p(-2) = -9.
Given expression:
- p(x) = 2x² - 7x + 1
To evaluate:
- p(3) + p(½) + p(-2)
Solution:
- p(3) = 2(3)² - 7(3) + 1
→ P(3) = 2(9) - 7(3) + 1
→ P(3) = 18 - 21 + 1
→ P(3) = -2
- P(½) = 2(½)² - 7(½) + 1
→ P(½) = 2 × (1/4) - (7/2) + 1
→ P(½) = 1/2 - 7/2 + 1
→ P(½) = -2
- P(-2) = 2(-2)² - 7(-2) + 1
→ P(-2) = 2(4) - 7(2) + 1
→ P(-2) = 8 - 14 + 1
→ P(-2) = -5
__________________
Required value:
→ p(3) + p(½) + p(-2)
→ (-2) + (-2) + (-5)
→ - 2 - 2 - 5
→ -9
Hence, our required value is -9.