Math, asked by anbinaviyanaver, 1 month ago

Solve: this question please anyone BUT CORRECT

Attachments:

Answers

Answered by BrainlyTwinklingstar
4

Answer

\sf \dashrightarrow \dfrac{3}{2x - y} + \dfrac{8}{x + 2y} = 3 \: \: --- (i)

\sf \dashrightarrow \dfrac{12}{x + 2y} - \dfrac{6}{2x - y} = 1 \: \: --- (ii)

Let \sf \dfrac{1}{2x - y} be u.

Let \sf \dfrac{1}{x + 2y} be v.

So, the equations become

\sf \dashrightarrow 3u + 8v = 3

\sf \dashrightarrow 12v - 6u = 1

By first equation,

\sf \dashrightarrow 3u + 8v = 3

\sf \dashrightarrow 3u = 3 - 8v

\sf \dashrightarrow u = \dfrac{3 - 8v}{3}

Now, let's find the value of v by second equation.

\sf \dashrightarrow 12v - 6u = 1

\sf \dashrightarrow 12v - 6 \bigg( \dfrac{3 - 8v}{3} \bigg) = 1

\sf \dashrightarrow 12v - \dfrac{18 - 48v}{3} = 1

\sf \dashrightarrow \dfrac{36v - 18 - 48v}{3} = 1

\sf \dashrightarrow \dfrac{-12v - 18}{3} = 1

\sf \dashrightarrow -12v - 18 = 3

\sf \dashrightarrow -12v = 3 + 18

\sf \dashrightarrow -12v = 21

\sf \dashrightarrow v = \dfrac{21}{-12}

\sf \dashrightarrow v = \dfrac{-7}{4}

Now, let's find the value of u by first equation.

\sf \dashrightarrow 3u + 8v = 3

\sf \dashrightarrow 3u + 8 \bigg( \dfrac{-7}{4} \bigg) = 3

\sf \dashrightarrow 3u + \dfrac{-56}{4} = 3

\sf \dashrightarrow 3u + (-14) = 3

\sf \dashrightarrow 3u - 14 = 3

\sf \dashrightarrow 3u = 3 + 14

\sf \dashrightarrow 3u = 17

\sf \dashrightarrow u = \dfrac{17}{3}

We know that,

\sf \dashrightarrow \dfrac{1}{2x - y} = u

\sf \dashrightarrow \dfrac{1}{2x - y} = \dfrac{17}{3}

\sf \dashrightarrow 3 = 17(2x - y)

\sf \dashrightarrow 34x - 17y = 3 \: \: --- (iii)

We also know that,

\sf \dashrightarrow \dfrac{1}{x + 2y} = v

\sf \dashrightarrow \dfrac{1}{x + 2y} = \dfrac{-7}{4}

\sf \dashrightarrow 4 = -7(x + 2y)

\sf \dashrightarrow -7x -14y = 4 \: \: --- (iv)

Now, by third equation,

\sf \dashrightarrow 34x - 17y = 3

\sf \dashrightarrow 34x = 3 + 17y

\sf \dashrightarrow x = \dfrac{3 + 17y}{34}

Now, let's find the value of y by fourth equation.

\sf \dashrightarrow -7x - 14y = 4

\sf \dashrightarrow -7 \bigg( \dfrac{3 + 17y}{34} \bigg) - 14y = 4

\sf \dashrightarrow \dfrac{-21 - 119y}{34} - 14y = 4

\sf \dashrightarrow \dfrac{-21 - 119y - 476y}{34} = 4

\sf \dashrightarrow \dfrac{-21 - 595y}{34} = 4

\sf \dashrightarrow -21 - 595y = 4 \times 34

\sf \dashrightarrow -21 - 595y = 136

\sf \dashrightarrow -595y = 136 + 21

\sf \dashrightarrow -595y = 157

\sf \dashrightarrow y = \dfrac{157}{-595}

\sf \dashrightarrow y = \dfrac{-157}{595}

Now, we can find the value of x by third equation.

\sf \dashrightarrow 34x - 17y = 3

\sf \dashrightarrow 34x - 17 \bigg( \dfrac{-157}{595} \bigg) = 3

\sf \dashrightarrow 34x - \dfrac{-2669}{595} = 3

\sf \dashrightarrow \dfrac{20230x + 2669}{595} = 3

\sf \dashrightarrow 20230x + 2669 = 595 \times 3

\sf \dashrightarrow 20230x + 2669 = 1785

\sf \dashrightarrow 20230x = 1785 - 2669

\sf \dashrightarrow 20230x = -884

\sf \dashrightarrow x = \dfrac{-884}{20230}

\sf \dashrightarrow x = \dfrac{-442}{10115}

Hence, the values of x and y are -442/10115 and -157/595 respectively.

Answered by roopashekarmalali
5

Answer:

who is seeing this

Step-by-step explanation:

please give me answer

I need speech about this topic please answer me in my question please

The British rule is far better than Indian

Polity (For and against). I

Similar questions