Math, asked by nikita128, 6 months ago

solve this question plz plz plz.....
xd​

Attachments:

Answers

Answered by Ïmpøstër
192

\bf\large\green{\underline{ given : }} \\  \\

  • Sum of 1st 7 terms of AP is 49.
  • Sum of next 10 terms of AP is 240.

 \\ \bf\large\green{\underline{to \: find :  }} \\  \\

  • Sum of 1st 'n' terms.

 \\ \bf\large\green{\underline{ formula \: used : }} \\  \\

\boxed{\bf {  a(n) = a + (n - 1)d }} \\  \\ \boxed{\bf{s(n) =  \frac{n}{2} (1st \: term \:  +  \: last \:term }}

Here ,

  • a(n) ➡ 'n' th term.
  • a ➡ 1st term.
  • n ➡ total number of terms.
  • d ➡ common difference.
  • s(n) ➡ sum of 'n' terms.

\bf\large\green{\underline{solution : \:  }} \\  \\

∵ Sum of first 7 terms is 49.

\sf\green{\underline{ }}s(7) = \frac{n}{2}  (a + (a + 6d)) \\  \\ \sf\green{\underline{ }}49 =  \frac{7}{2} (2a + 6d) \\  \\ \sf\green{\underline{ }}14 = 2a + 6d \\  \\ \sf\red{ 7 = a + 3d }  \:  \:  \:  \:  \:  \:  \:  \:   -  -  - (1) \\  \\

∵ Sum of next 10 terms is 240.

∴ Sum of first 17 terms will be (240+49) = 249.

\sf\green{\underline{ }}s(17) =  \frac{17}{2} (a + (a + 16d)) \\  \\ \sf\green{\underline{ }}289 =  \frac{17}{2} (2a + 16d) \\  \\ \sf\green{\underline{ }}34 = 2a + 16d \\  \\ \sf\red{17 = a + 8d } \:  \:  \:  \:  \:  \:  \:  -  -   - (2) \\  \\

Substracting equation (1) and (2) ,

  • a + 8d - a - 3d = 17 - 7
  • 5d = 10

d = 2

Putting this value in equation (1),

7 = a + 3d

7 = a + 3(2)

7 = a + 6

a = 1

Sum of 'n' terms,

\sf\green{\underline{ }}s(n) =  \frac{n}{2} (a + (a + (n - 1)d) \\  \\  =  > \sf\green{\underline{ }}s(n) =  \frac{n}{2} (1 + (1 + (n - 1)2) \\  \\  =  > \sf\green{\underline{ }}s(n) =  \frac{n}{2} (2 + 2n - 2) \\  \\  =  > \sf\green{\underline{ }} s(n) = \frac{n}{2} (2n) \\  \\ \bf\pink{\underline{ s(n) =  {n}^{2} }}

∴ Sum of 'n' numbers is n².

Answered by KittyBIoom
172

\bf\large{\underline{ given : }} \\  \\

Sum of 1st 7 terms of AP is 49.

Sum of next 10 terms of AP is 240.

 \\ \bf\large{\underline{to \: find :  }} \\  \\

Sum of 1st 'n' terms.

 \\ \bf\large{\underline{ formula \: used : }} \\  \\

\boxed{\bf {  a(n) = a + (n - 1)d }} \\  \\ \boxed{\bf{s(n) =  \frac{n}{2} (1st \: term \:  +  \: last \:term }}

Here ,

a(n) ➡ 'n' th term.

a ➡ 1st term.

n ➡ total number of terms.

d ➡ common difference.

s(n) ➡ sum of 'n' terms.

\bf\large{\underline{solution : \:  }} \\  \\

∵ Sum of first 7 terms is 49.

\sf{\underline{ }}s(7) = \frac{n}{2}  (a + (a + 6d)) \\  \\ \sf\green{\underline{ }}49 =  \frac{7}{2} (2a + 6d) \\  \\ \sf\green{\underline{ }}14 = 2a + 6d \\  \\ \sf\red{ 7 = a + 3d }  \:  \:  \:  \:  \:  \:  \:  \:   -  -  - (1) \\  \\

∵ Sum of next 10 terms is 240.

∴ Sum of first 17 terms will be (240+49) = 249.

\sf{\underline{ }}s(17) =  \frac{17}{2} (a + (a + 16d)) \\  \\ \sf\green{\underline{ }}289 =  \frac{17}{2} (2a + 16d) \\  \\ \sf\green{\underline{ }}34 = 2a + 16d \\  \\ \sf\red{17 = a + 8d } \:  \:  \:  \:  \:  \:  \:  -  -   - (2) \\  \\

Substracting equation (1) and (2) ,

a + 8d - a - 3d = 17 - 7

5d = 10

d = 2

Putting this value in equation (1),

7 = a + 3d

7 = a + 3(2)

7 = a + 6

a = 1

Sum of 'n' terms,

\sf{\underline{ }}s(n) =  \frac{n}{2} (a + (a + (n - 1)d) \\  \\  =  > \sf{\underline{ }}s(n) =  \frac{n}{2} (1 + (1 + (n - 1)2) \\  \\  =  > \sf{\underline{ }}s(n) =  \frac{n}{2} (2 + 2n - 2) \\  \\  =  > \sf{\underline{ }} s(n) = \frac{n}{2} (2n) \\  \\ \bf\red{\underline{ s(n) =  {n}^{2} }}

∴ Sum of 'n' numbers is n².

Similar questions