Math, asked by sonusharma45, 9 months ago

solve this question plzz

oye sonu monu naam pata chal gaya bas karo yaar ab ​

Attachments:

Answers

Answered by sonal1305
4

Formula Used :

\:

 {a}^{3}  -  {b}^{3}  = (a - b)( {a}^{2}  +  {b}^{2}  + ab)

\:

 \sf{cos}^{2} \theta \:   +  {sin}^{2} \: \theta = 1

\:

Solution :

\:

LHS

\:

\sf \frac{ { \cos^{2}\theta }}{1 - \:  tan\theta}  +  \frac{ {sin}^{3}\theta }{sin\theta  \: - \:  cos\theta}  \\

\sf \frac{ {cos}^{2} \theta}{1 -  \frac{sin\theta}{cos \theta} }  +   \frac{ {sin}^{3} \theta}{sin\theta - cos\theta}   \\

\sf\frac{ {cos}^{2}\theta }{ \frac{cos\theta - sin\theta}{cos\theta} } +  \frac{ {sin}^{3} \theta}{sin\theta - cos\theta}   \\

 \sf\frac{ {cos}^{3}\theta }{cos\theta - sin\theta}  + \frac{ {sin}^{3}\theta }{sin\theta - cos\theta}   \\

 \sf\frac{ {cos}^{3}\theta }{cos\theta - sin\theta}  + \frac{ {sin}^{3}\theta } { - (cos\theta - sin\theta)}   \\

 \sf\frac{ {cos}^{3}\theta }{cos\theta - sin\theta}   -  \frac{ {sin}^{3}\theta } {  cos\theta - sin\theta}   \\

 \sf\frac{ {cos}^{3}\theta  -  {sin}^{3}\theta }{cos\theta - sin\theta}  \\

\sf\frac{ {(cos}\theta - sin\theta)( {cos}^{2}\theta \:  +  \:  {sin}^{2} \theta \:  +  \: sin \theta \: cos\theta) }{cos\theta - sin\theta}  \\

Cancelling \sf cos\theta - sin\theta

\sf1 + sin\theta \: cos \theta \\

RHS

------ ( Proved )

Similar questions