Math, asked by Anonymous, 6 months ago

SOlVE THIS QUESTION....SIS AND...BRO..​

Attachments:

Answers

Answered by BrainlyPopularman
22

GIVEN :

 \\ \implies\bf \: I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \frac{1}{(1 +  {e}^{ \sin x } )(2 -  \cos 2x)}.dx  \\

TO FIND :

Value of 27I² = ?

SOLUTION :

 \\  \implies\bf \: I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \frac{1}{(1 +  {e}^{ \sin x } )(2 -  \cos 2x)}.dx \:  \:  \:  -  -  - eq.(1)  \\

• Using property –

 \\  \implies\bf \int_{a}^{b}f(x).dx =  \int_{a}^{b}f(a + b - x).dx  \\

• So that –

 \\  \implies\bf \: I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \frac{1}{(1 +  {e}^{  - \sin x } )(2 -  \cos 2x)}.dx  \\

 \\  \implies\bf \: I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \dfrac{ {e}^{ \sin x} }{(  {e}^{ \sin x }  + 1)(2 -  \cos 2x)} .dx\:  \:  \:  -  -  - eq.(2)  \\

• Now add eq.(1) and eq.(2) –

 \\  \implies\bf \: 2I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \dfrac{ ({e}^{ \sin x}  + 1)}{(  {e}^{ \sin x }  + 1)(2 -  \cos 2x)} .dx \\

 \\  \implies\bf \: 2I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \dfrac{1}{2 -  \cos 2x}.dx  \\

• We know that –

 \\  \implies\bf \:  \cos(2x)   =  2\cos^{2}  - 1 \\

 \\  \implies\bf \: 2I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \dfrac{1}{2 -  \cos 2x}.dx  \\

 \\  \implies\bf \: 2I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \dfrac{1}{2 - ( 2  \cos^{2} x - 1)}.dx  \\

 \\  \implies\bf \: 2I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \dfrac{1}{2 -  2  \cos^{2} x +1}.dx  \\

 \\  \implies\bf \: 2I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \dfrac{1}{3 - 2  \cos^{2} x }.dx  \\

• We should write this as –

 \\  \implies\bf \: 2I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \dfrac{ { \sec}^{2}x }{3{ \sec}^{2}x- 2  }.dx  \\

 \\  \implies\bf \: 2I  \:  =  \dfrac{2}{\pi}  \int_{ -  \frac{\pi}{4}}^{ \frac{\pi}{4}} \dfrac{ { \sec}^{2}x }{3(1 + { \tan}^{2}x)- 2  }.dx  \\

• Put tan(x) = t –

 \\  \implies\bf \:  (\sec^{2} x).dx = dt  \\

 \\  \implies\bf \: 2I  \:  =  \dfrac{2}{\pi}  \int_{ -1}^{1} \dfrac{dt}{3(1 + {t}^{2})- 2  }\\

 \\  \implies\bf \: 2I  \:  =  \dfrac{2}{\pi}  \int_{ -1}^{1} \dfrac{dt}{3 + 3{t}^{2}- 2  }\\

 \\  \implies\bf \: I  \:  =  \dfrac{1}{\pi}  \int_{ -1}^{1} \dfrac{dt}{3{t}^{2} + 1 }\\

 \\  \implies\bf \: I  \:  =  \dfrac{1}{3\pi}  \int_{ -1}^{1} \dfrac{dt}{{t}^{2} +  { (\frac{1}{ \sqrt{3} } )}^{2}  }\\

• Using identity —

 \\  \implies\bf  \int\dfrac{dt}{{t}^{2} +  {a}^{2} } = \dfrac{1}{a} {tan}^{ - 1} \left( \frac{t}{a} \right) + c \\

 \\  \implies\bf \: I  \:  =  \dfrac{\sqrt{3}}{3\pi}  \left[ { \tan}^{ - 1}( \sqrt{3} t) \right]_{ -1}^{1} \\

 \\  \implies\bf \: I  \:  =  \dfrac{1}{\sqrt{3}\pi}  \left[ { \tan}^{ - 1}( \sqrt{3} )  -  { \tan}^{ - 1}( -  \sqrt{3} )  \right]\\

 \\  \implies\bf \: I  \:  =  \dfrac{1}{\sqrt{3}\pi}  \left[ { \tan}^{ - 1}( \sqrt{3} )   +  { \tan}^{ - 1}(  \sqrt{3} )  \right]\\

 \\  \implies\bf \: I  \:  =  \dfrac{1}{\sqrt{3}\pi}  \left[2 { \tan}^{ - 1}( \sqrt{3} ) \right]\\

 \\  \implies\bf \: I  \:  =  \dfrac{1}{\sqrt{3}\pi}  \left[2  \times  \dfrac{\pi}{3}  \right]\\

 \\  \implies\bf \: I  \:  =  \dfrac{2}{3\sqrt{3}}

 \\  \implies\bf \: I ^{2}   \:  = \dfrac{4}{27}

 \\  \implies \large{\boxed{\bf  27{I}^{2}   \:  =4}}

Similar questions