Math, asked by sionamaharana9560, 11 months ago

solve this question which is from complex number ​

Attachments:

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{x^9+x^5-x^4=1}

\underline{\textbf{To find:}}

\textsf{The solution of the given equation}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{x^9+x^5-x^4=1}

\mathsf{x^9+x^5-x^4-1=0}

\textsf{This can be written as}

\mathsf{x^5(x^4+1)-1(x^4+1)=0}

\mathsf{(x^5-1)(x^4+1)=0}

\implies\mathsf{x^5-1=0\;\;(or)\;\;x^4+1=0}

\underline{\mathsf{Case(i):\;}}

\mathsf{x^5=1}

\mathsf{x^5=cos\,0+i\,sin \,0}

\mathsf{x^5=cos\,2k\pi+i\,sin \,2k\pi}

\implies\mathsf{x=(cos\,2k\pi+i\,sin\,2k\pi)^{\dfrac{1}{5}}\;\;k=0,1,2,3,4}

\textsf{By Demoivre's theorem}

\implies\mathsf{x=cos\dfrac{2k\pi}{5}+i\,sin\dfrac{2k\pi}{5}\;\;\;k=0,1,2,3,4}

\textsf{The solutions are}

\mathsf{For\;k=0,\;\;x=cos\,0+i\,sin\,0}

\mathsf{For\;k=1,\;x=cos\dfrac{2\pi}{5}+i\,sin\dfrac{2\pi}{5}}

\mathsf{For\;k=2,\;x=cos\dfrac{4\pi}{5}+i\,sin\dfrac{4\pi}{5}}

\mathsf{For\;k=3,\;x=cos\dfrac{6\pi}{5}+i\,sin\dfrac{6\pi}{5}}

\mathsf{For\;k=4,\;x=cos\dfrac{8\pi}{5}+i\,sin\dfrac{8\pi}{5}}

\underline{\mathsf{Case(ii):\;}}

\mathsf{x^4+1=0}

\mathsf{x^4=-1}

\mathsf{x^4=cos\,\pi+i\,sin \,\pi}

\mathsf{x^4=cos\,\pi+2k\pi+i\,sin \,\pi+2k\pi}

\mathsf{x^4=cos(2k+1)\pi+i\,sin(2k+1)\pi}

\implies\mathsf{x=(cos(2k+1)\pi+i\,sin(2k+1)\pi)^{\dfrac{1}{4}}\;\;k=0,1,2,3}

\textsf{By Demoivre's theorem}

\implies\mathsf{x=cos\dfrac{(2k+1)\pi}{4}+i\,sin\dfrac{(2k+1)\pi}{4}\;\;\;k=0,1,2,3}

\textsf{The solutions are}

\mathsf{For\;k=0,\;x=cos\dfrac{\pi}{4}+i\,sin\dfrac{\pi}{4}}

\mathsf{For\;k=1,\;x=cos\dfrac{3\pi}{4}+i\,sin\dfrac{3\pi}{4}}

\mathsf{For\;k=2,\;x=cos\dfrac{5\pi}{4}+i\,sin\dfrac{5\pi}{4}}

\mathsf{For\;k=3,\;x=cos\dfrac{7\pi}{4}+i\,sin\dfrac{7\pi}{4}}

\therefore\textsf{Totally we have 9 solutions}

Answered by teachermaster213
0

Answer:

The answe is 9

Step-by-step explanation:

i hope it help you.

Similar questions