Math, asked by Anonymous, 5 months ago

Solve this. Right answer will be marked as brainliest. Don't spam.​

Attachments:

Answers

Answered by EliteSoul
20

Question :

Find the value of 's' from following equation :

\star\sf \ \ 75 = \dfrac{200}{200 + 20s} + \dfrac{1}{s}

Solution :

: \implies\sf 75 = \dfrac{200}{200 + 20s} + \dfrac{1}{s} \\\\ \\ : \implies\sf 75 = \dfrac{200s + 200 + 20s}{s(200 + 20s)} \\\\ \\ : \implies\sf 75 = \dfrac{220s + 200}{200s + 20s^2} \\\\ \\ : \implies\sf 75(200s + 20s^2) = 220s + 200 \\\\ \\ : \implies\sf 15000s + 1500s^2 = 220s + 200 \\\\ \\ : \implies\sf 1500s^2 + 15000s - 220s - 200 = 0 \\\\ \\ : \implies\sf 1500s^2 + 14780s - 200 = 0 \\\\ \\ : \implies\sf 4(375s^2 + 3695s - 50) = 0 \\\\ \\ : \implies\sf 375s^2 + 3695s - 50 = 0

Now using quadratic formula :

: \implies\sf s = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\\\ \\ : \implies\sf s = \dfrac{-3695 \pm \sqrt{(3695)^2 - 4 \times 375 \times (-50)}}{2 \times 375} \\\\ \\ : \implies\sf s = \dfrac{-3695 \pm \sqrt{13728025}}{750} \\\\ \\ : \implies\sf s = \dfrac{-3695 \pm 3705.13}{750} \\\\ \\ : \implies\sf s = \dfrac{-3695 + 3705.13}{750} \ \ or, \ \ s = \dfrac{-3695 - 3705.13}{750} \\\\ \\ : \implies\sf s = \dfrac{10.13}{750} \ \ or, \ \ s = \dfrac{-7400.13}{750}

: \implies\underline{\boxed{\sf{s = 0.014}}} \ \ \sf or, \ \ \underline{\boxed{\sf{s = -9.87}}} \qquad\quad [{\bold{Required \ answer}}]


amitkumar44481: Perfect :-)
EliteSoul: Thanks! :)
Answered by Anonymous
110

♣ Qᴜᴇꜱᴛɪᴏɴ :

What is be the value of 's' in the following equation ?

★═══════════════════════★

♣ ɢɪᴠᴇɴ ᴇQᴜᴀᴛɪᴏɴ :

\sf{75=\dfrac{200}{200+20s}+\dfrac{1}{s}}

★═══════════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{s=\dfrac{-739+\sqrt{549121}}{150},\:s=\dfrac{-739-\sqrt{549121}}{150}}\left(\mathrm{Decimal}:\quad s=0.01351\dots ,\:s=-9.86684\dots \right)}

★═══════════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\boxed{\bf{75=\dfrac{200}{200+20s}+\dfrac{1}{s}}}

Firstly Simplify  \sf{\dfrac{200}{200+20s}}  :

\implies\sf{\dfrac{200}{200+20 s}= \quad \dfrac{10}{10+s}}

\sf{75=\dfrac{10}{10+s}+\dfrac{1}{s}}

Find Least Common Multiplier of  10+s, s :

L.C.M Defination :

\boxed{\star\:\:\mathrm{The\:LCM\:of\:}a,\:b\:\mathrm{is\:the\:smallest\:multiplier\:that\:is\:divisible\:by\:both\:}a\mathrm{\:and\:}b\:\:\star}

\text { Compute an expression comprised of factors that appear either in } 10+s \text { or } s

\sf{=s\left(s+10\right)}

\mathrm{Multiply\:by\:LCM=}s\left(s+10\right)

\sf{75s\left(s+10\right)=\dfrac{10}{10+s}s\left(s+10\right)+\dfrac{1}{s}s\left(s+10\right)}

Simplify :

\sf{75s\left(s+10\right)=11s+10}

On solving \sf{75s\left(s+10\right)=11s+10}  we get \sf{75s^2+739s-10=0}

Solve with the quadratic formula :

Quadratic Equation Formula :

\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}

\sf{x_{1,\:2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}}

\mathrm{For\:}\quad a=75,\:b=739,\:c=-10:\quad s_{1,\:2}=\dfrac{-739\pm \sqrt{739^2-4\cdot \:75\left(-10\right)}}{2\cdot \:75}

\sf{s=\dfrac{-739+\sqrt{739^{2}-4 \cdot 75(-10)}}{2 \cdot 75}= \dfrac{-739+\sqrt{549121}}{150}}

\sf{s=\dfrac{-739-\sqrt{739^{2}-4 \cdot 75(-10)}}{2 \cdot 75}= \dfrac{-739-\sqrt{549121}}{150}}

\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

\boxed{\sf{s=\dfrac{-739+\sqrt{549121}}{150},\:s=\dfrac{-739-\sqrt{549121}}{150}}}

★═══════════════════════★

♣ ᴠᴇʀɪꜰʏ ꜱᴏʟᴜᴛɪᴏɴꜱ :

Find undefined (singularity) points:  s = -10, s = 0

Combine undefined points with solutions:

\boxed{\sf{s=\dfrac{-739+\sqrt{549121}}{150},\:s=\dfrac{-739-\sqrt{549121}}{150}}}

★═══════════════════════★

Similar questions