Math, asked by Suryavardhan1, 1 year ago

Solve this:-

 \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5 -  \sqrt{3} } }  = a +  \sqrt{3} b

Answers

Answered by Yuichiro13
3
Heya

 \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  = ( \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} })( \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}   + \sqrt{3} })

 =  \frac{ {( \sqrt{5}  +  \sqrt{3} )}^{2} }{ { \sqrt{5} }^{2}  -  { \sqrt{3} }^{2} }  =  \frac{8 + 2 \sqrt{15} }{2}

 = 4 +  \sqrt{15}

Comparing this to ( a + b √3 ) :
a = 4 \:  \: b =  \sqrt{5}


Hope this helps ^_^
Similar questions