Math, asked by CyberBeast, 3 days ago

solve this

{ \int \: \sqrt{ \tan \: x } \: \: dx}

Answers

Answered by DEVILSTARK02
9

Answer:

This is ur answer....

Hope this helps you

Please mark me brainliest ...

Attachments:
Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm  \sqrt{tanx} \: dx \\

To evaluate this integral, we use method of Substitution.

So, Substitute

\rm \:  \sqrt{tanx} = y \\

\rm \: tanx =  {y}^{2}  \\

\rm \:  {sec}^{2}x \: dx \:  =  \: 2y \: dy \\

\rm \: (1 +  {tan}^{2}x )\: dx \:  =  \: 2y \: dy \\

\rm \: (1 +   {y}^{4}  )\: dx \:  =  \: 2y \: dy \\

\rm\implies \:dx \:  =  \: \dfrac{2y}{ {y}^{4} + 1}  \: dy \\

So, on substituting these values in above integral, we get

\rm \: =  \: \displaystyle\int\rm y \times  \frac{2y}{ {y}^{4}  + 1} \: dy \\

\rm \: =  \: \displaystyle\int\rm  \frac{2 {y}^{2} }{ {y}^{4}  + 1} \: dy \\

\rm \: =  \: \displaystyle\int\rm  \frac{ {y}^{2}  +  {y}^{2}  + 1 - 1}{ {y}^{4}  + 1} \: dy \\

\rm \: =  \: \displaystyle\int\rm  \frac{ ({y}^{2} + 1)  + ( {y}^{2} - 1)}{ {y}^{4}  + 1} \: dy \\

\rm \: =  \: \displaystyle\int\rm  \frac{ {y}^{2}  + 1}{ {y}^{4}  + 1} \: dy \:  +  \: \displaystyle\int\rm  \frac{ {y}^{2}  - 1}{ {y}^{4}  + 1} \: dy \\

can be further rewritten as

\rm \: =  \: \displaystyle\int\rm  \frac{1 +  \dfrac{1}{ {y}^{2} } }{ {y}^{2}  + \dfrac{1}{ {y}^{2} }} \: dy \:  +  \: \displaystyle\int\rm  \frac{1 - \dfrac{1}{ {y}^{2} }}{ {y}^{2}  + \dfrac{1}{ {y}^{2} }} \: dy \\

can be further rewritten as

\rm \: =  \: \displaystyle\int\rm  \frac{1 +  \dfrac{1}{ {y}^{2} } }{ {y}^{2}  + \dfrac{1}{ {y}^{2}} - 2 + 2} \: dy \:  +  \: \displaystyle\int\rm  \frac{1 - \dfrac{1}{ {y}^{2} }}{ {y}^{2}  + \dfrac{1}{ {y}^{2} } + 2 - 2} \: dy \\

\rm \: =  \: \displaystyle\int\rm  \frac{1 +  \dfrac{1}{ {y}^{2} } }{ {\bigg(y - \dfrac{1}{y} \bigg) }^{2}  + 2} \: dy \:  +  \: \displaystyle\int\rm  \frac{1 - \dfrac{1}{ {y}^{2} }}{ {\bigg(y + \dfrac{1}{y} \bigg) }^{2}  - 2} \: dy \\

Now, we again use method of Substitution

For first integral, Substitute

\rm \: y - \dfrac{1}{y} = u \\

\rm \: \bigg(1 +  \dfrac{1}{ {y}^{2} } \bigg)dy= du \\

For Second integral, Substitute

\rm \: y + \dfrac{1}{y} = v\\

\rm \: \bigg(1 -  \dfrac{1}{ {y}^{2} } \bigg)dy= dv \\

So, on substituting the values, we get

\rm \: =  \: \displaystyle\int\rm  \frac{du}{ {u}^{2}  + 2}  \:  +  \: \displaystyle\int\rm  \frac{dv}{ {v}^{2}  - 2}  \\

\rm \: =  \: \displaystyle\int\rm  \frac{du}{ {u}^{2}  +  {( \sqrt{2} )}^{2} }  \:  +  \: \displaystyle\int\rm  \frac{dv}{ {v}^{2}  -  {( \sqrt{2} )}^{2} }  \\

We know,

\boxed{\sf{  \:\displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a} \:  {tan}^{ - 1} \frac{x}{a}   \:  +  \: c \: }} \\

and

\boxed{\sf{  \:\displaystyle\int\rm  \frac{dx}{ {x}^{2} -  {a}^{2} }  =  \frac{1}{a} \:  log\bigg | \frac{x - a}{x + a} \bigg|    \:  +  \: c \: }} \\

So, using these results, we get

\rm \: =  \: \dfrac{1}{ \sqrt{2} }{tan}^{ - 1} \dfrac{u}{ \sqrt{2} }  + \dfrac{1}{2 \sqrt{2} }log\bigg | \dfrac{v -  \sqrt{2} }{v +  \sqrt{2} } \bigg| + c \\

\rm \: =  \: \dfrac{1}{ \sqrt{2} }{tan}^{ - 1} \dfrac{y -  \dfrac{1}{y} }{ \sqrt{2} }  + \dfrac{1}{2 \sqrt{2} }log\bigg | \dfrac{y + \dfrac{1}{y} -  \sqrt{2} }{y + \dfrac{1}{y} +  \sqrt{2} } \bigg| + c \\

\rm \: =  \: \dfrac{1}{ \sqrt{2} }{tan}^{ - 1} \dfrac{ {y}^{2} - 1}{ \sqrt{2} y}  + \dfrac{1}{2 \sqrt{2} }log\bigg | \dfrac{ {y}^{2} + 1  -  \sqrt{2} y}{ {y}^{2} +  1 + \sqrt{2} y} \bigg| + c \\

\rm \: =  \: \dfrac{1}{ \sqrt{2} }{tan}^{ - 1} \dfrac{ tanx - 1}{ \sqrt{2}  \sqrt{tanx} }  + \dfrac{1}{2 \sqrt{2} }log\bigg | \dfrac{ tanx + 1  -  \sqrt{2}  \sqrt{tanx} }{ tanx +  1 + \sqrt{2}  \sqrt{tanx} } \bigg| + c \\

Hence,

\rm \:  \:  \: \displaystyle\int\rm  \:  \sqrt{tanx} \: dx \:  \\   \\ \rm \: =  \: \dfrac{1}{ \sqrt{2} }{tan}^{ - 1} \dfrac{ tanx - 1}{ \sqrt{2}  \sqrt{tanx} }  + \dfrac{1}{2 \sqrt{2} }log\bigg | \dfrac{ tanx + 1  -  \sqrt{2}  \sqrt{tanx} }{ tanx +  1 + \sqrt{2}  \sqrt{tanx} } \bigg| + c \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions