Math, asked by krishmehta6195, 2 days ago

solve this
this is from the chapter introduction to trigonometry​

Attachments:

Answers

Answered by TrustedAnswerer19
9

Answer:

L.H.S \:  = \sf \:   \sqrt{ \frac{1 + sin \: x}{1 - sin \: x} }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \sf  =  \sqrt{ \frac{(1 + sin \: x)(1 + sin \: x)}{(1 - sin \: x)(1 + sin \: x)} }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \sf =  \sqrt{ \frac{ {(1 + sin \: x)}^{2} }{ {1}^{} -  {sin \: }^{2}  x} }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \sf =   \sqrt{ \frac{ {(1 + sin \: x)}^{2} }{ {cos}^{2}  \: x} }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \sf =  \frac{1 + sin \: x}{ cos \: x}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \sf =  \frac{1}{cos \: x}  +  \frac{sin \: x}{ cos \: x}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \sf =  \: sec \: x + tan \: x \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \sf\:=\:R.H.S \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \sf \: (hence \: proved)

Answered by ankurgoswami1976
2

Answer:

vese agar mam ki jagah Mili kho to I like it

Similar questions