Math, asked by pijushp716, 1 month ago

solve this.This question os of Qudratic Equation​

Attachments:

Answers

Answered by TrustedAnswerer19
37

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

 \frac{ \sqrt{1 + x}  \:  +  \sqrt{1 - x} }{ \sqrt{1 + x}  -  \sqrt{1 - x} }  \\  =  \frac{( { \sqrt{1 + x}  +  \sqrt{1 - x} )}^{2} }{ {( \sqrt{1 + x} )}^{2} -  {( \sqrt{1 - x} })^{2}  }  \\  =  \frac{1 + x + 1 - x + 2 \sqrt{1 -  {x}^{2} } }{1 + x  - 1 + x}  \\  =  \frac{2 + 2 \sqrt{1 -  {x}^{2} } }{2x}  \\  =  \frac{1 +  \sqrt{1 -  {x}^{2} } }{x}  \\  =  \frac{1 +  \sqrt{1 -  ({ \frac{ \sqrt{3} }{2} })^{2} } }{ \frac{ \sqrt{3} }{2} }  \\  =  \frac{1 +  \sqrt{1 -  \frac{3}{4} } }{ \frac{ \sqrt{3} }{2} }  \\  =  \frac{1 +  \sqrt{ \frac{1}{4} } }{ \frac{ \sqrt{3} }{2} }  \\  =  \frac{1 +  \frac{1}{2} }{ \frac{ \sqrt{3} }{2} }  \\  =  \frac{ \frac{3}{2} }{ \frac{ \sqrt{3} }{2} }  \\  =  \frac{3}{2}  \times  \frac{2}{ \sqrt{3} }  \\  =  \sqrt{3}

Similar questions