Solve This TRIGONOMERIY Question. 40 "#POINTS". PLZ Answer Quickly In need your help
Attachments:
Answers
Answered by
6
Answer
............
Tan A = n tan B can be written as,
======
{tanA} ===
_____________
{tanB} = n
================
tanA *
___________
{1}{tanB}. = n
_______________
{sinA}. cosA} *
______________
{cosB}{sinB} = n
{sinAcosB}{
cosAsinB} = n
A = m sin B ----
Substitute (2) in (1), we get
{m sinB cosB}
--------. )
= {cosA sinB} = n
{m cosB}{cosA} =n
m cos B = n cosA
On squaring both sides, we get
n^2 cos^2A = m^2 cos^2B
= m^2(1 - sin^2B)
Equation can be written as sinB = sinA/m
= m^2(1 -
________________________
{sin^2A}{m^2} )
------------
m^2 - sin^2A
m^2 - 1 + cos^2A
n^2cos^2A - cos^2A = m^2 - 1
cos^2A = \frac{m^2 - 1}{n^2 - 1}
LHS = RHS.
............
Tan A = n tan B can be written as,
======
{tanA} ===
_____________
{tanB} = n
================
tanA *
___________
{1}{tanB}. = n
_______________
{sinA}. cosA} *
______________
{cosB}{sinB} = n
{sinAcosB}{
cosAsinB} = n
A = m sin B ----
Substitute (2) in (1), we get
{m sinB cosB}
--------. )
= {cosA sinB} = n
{m cosB}{cosA} =n
m cos B = n cosA
On squaring both sides, we get
n^2 cos^2A = m^2 cos^2B
= m^2(1 - sin^2B)
Equation can be written as sinB = sinA/m
= m^2(1 -
________________________
{sin^2A}{m^2} )
------------
m^2 - sin^2A
m^2 - 1 + cos^2A
n^2cos^2A - cos^2A = m^2 - 1
cos^2A = \frac{m^2 - 1}{n^2 - 1}
LHS = RHS.
Answered by
0
Hey friends ..
We have to eliminate B. So ,we find cosecB and CotB from the given relations and use the identity cosec²CB -cot²B=1 .
SinA=msinB=>cosecB=m/sinA------------1)
tanA=ntanB=>cotB=n/tanA-------2)
squaring 1 ) and 2} and subtracting we get
m²/sin²A-n²/tan²A=cosec²B-cot²B
As we know cosec²B-cot²B=1
m²/sin²A-n²/sin²A/cos²A=1
=>m²-n²cos²A=>sin²A
=>m²-n²cos²A=1-cos²A
=>(n²-1)cos²A=m²-1
=>cos²A=m²-1/n²+1 prooved here...
Hope it helps you..
@Rajukumar111
We have to eliminate B. So ,we find cosecB and CotB from the given relations and use the identity cosec²CB -cot²B=1 .
SinA=msinB=>cosecB=m/sinA------------1)
tanA=ntanB=>cotB=n/tanA-------2)
squaring 1 ) and 2} and subtracting we get
m²/sin²A-n²/tan²A=cosec²B-cot²B
As we know cosec²B-cot²B=1
m²/sin²A-n²/sin²A/cos²A=1
=>m²-n²cos²A=>sin²A
=>m²-n²cos²A=1-cos²A
=>(n²-1)cos²A=m²-1
=>cos²A=m²-1/n²+1 prooved here...
Hope it helps you..
@Rajukumar111
ashutoshsahoo0p2ux7j:
It's a very easy trick thanks for trying it out.
Similar questions