Math, asked by Suhaani71, 7 months ago

Solve through formula method:
x^2+3x-28=0

Need ASAP!​

Answers

Answered by SweetCharm
9

 \huge \sf {\orange{\underline{\purple{\underline{Question :-}}}}}

\sf{Solve :\:x^2+3x-28=0}

 \huge \sf {\orange {\underline {\pink{\underline{Answer :-}}}}}

\large\boxed{\sf{x=4,\:x=-7}}

\underline{\underline{\sf{x^2+3x-28=0}}}

Solve with the quadratic formula

\bf{Quadratic\:Equation\:Formula:}

\sf{\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}}

\sf{x_{1,\:2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}}

For

a = 1

b = 3

c = -28

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \left(-28\right)}}{2\cdot \:1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{3^2+4\cdot \:1\cdot \:28}}{2\cdot 1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{3^2+112}}{2\cdot 1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{9+112}}{2\cdot 1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{121}}{2\cdot 1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{11^2}}{2\cdot 1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \:11}{2\cdot \:1}}

Separate the solutions

\sf{\displaystyle x_1=\frac{-3+11}{2\cdot \:1},\:x_2=\frac{-3-11}{2\cdot \:1}}

--------------------

\sf{x=\dfrac{-3+11}{2\cdot \:1}}

\sf{x=\dfrac{8}{2\cdot \:1}}

\sf{x=\dfrac{8}{2}}

\bf{x=4}

--------------------

\sf{\displaystyle x=\frac{-3-11}{2\cdot \:1}}

\sf{x=\dfrac{-14}{2\cdot \:1}}

\sf{x=\dfrac{-14}{2}}

\bf{x=-7}

--------------------

The solutions to the quadratic equation are :

\large\boxed{\sf{x=4,\:x=-7}}

{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}

\red{\tt{sωєєтcнαям♡~}}

Answered by Anonymous
6

 \huge \sf {\orange{\underline{\purple{\underline{Question :-}}}}}

\sf{Solve :\:x^2+3x-28=0}

 \huge \sf {\orange {\underline {\pink{\underline{Answer :-}}}}}

\large\boxed{\sf{x=4,\:x=-7}}

\underline{\underline{\sf{x^2+3x-28=0}}}

Solve with the quadratic formula

\bf{Quadratic\:Equation\:Formula:}

\sf{\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}}

\sf{x_{1,\:2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}}

For

a = 1

b = 3

c = -28

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \left(-28\right)}}{2\cdot \:1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{3^2+4\cdot \:1\cdot \:28}}{2\cdot 1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{3^2+112}}{2\cdot 1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{9+112}}{2\cdot 1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{121}}{2\cdot 1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \sqrt{11^2}}{2\cdot 1}}

\sf{x_{1,\:2}=\dfrac{-3\pm \:11}{2\cdot \:1}}

Separate the solutions

\sf{\displaystyle x_1=\frac{-3+11}{2\cdot \:1},\:x_2=\frac{-3-11}{2\cdot \:1}}

--------------------

\sf{x=\dfrac{-3+11}{2\cdot \:1}}

\sf{x=\dfrac{8}{2\cdot \:1}}

\sf{x=\dfrac{8}{2}}

\bf{x=4}

--------------------

\sf{\displaystyle x=\frac{-3-11}{2\cdot \:1}}

\sf{x=\dfrac{-14}{2\cdot \:1}}

\sf{x=\dfrac{-14}{2}}

\bf{x=-7}

--------------------

The solutions to the quadratic equation are :

\large\boxed{\sf{x=4,\:x=-7}}

{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}

Similar questions