Math, asked by ayushkeer1525, 4 days ago

solve using quadratic formula \begin{gathered} {abx}^{2} + ( {b}^{2} - ac)x - bc = 0 \\ \end{gathered} abx 2 +(b 2 −ac)x−bc=0 ​ ​

Answers

Answered by lalith2004ky
0

Answer:

ab {x}^{2}  + ( {b}^{2}  - ac)x - bc  = 0 \\

Now, Using Quadratic formula,

x =  \frac{ - b± \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  =  \frac{ - ( {b }^{2}- ac)±  \sqrt{ {({b }^{2}- ac )}^{2} - 4(ab)( - bc)}  }{2ab}  \\  =  \frac{ac -  {b}^{2}± \sqrt{({ ({b}^{2})   }^{2} +   {(ac)}^{2}   - 2( {b}^{2}) (ac) )+  4a {b}^{2} c} }{2ab}   \\  =  \frac{ac -  {b}^{2}±  \sqrt{{b}^{4}  + {a}^{2} {c}^{2} - 2a {b}^{2}c  +   4a {b}^{2} c } }{2ab}  \\  =  \frac{ac -  {b}^{2}±  \sqrt{{b}^{4}  + {a}^{2} {c}^{2}  +  2a {b}^{2}c   } }{2ab}  \\  =   \frac{ac -  {b}^{2}±   \sqrt{{( {b}^{2}  + ac) }^{2}}  }{2ab}   \\  =  \frac{ac -  {b}^{2}± ( {b}^{2}  + ac)}{2ab}  \\  = \frac{ac -  {b}^{2} +  {b}^{2}  + ac}{2ab} \: ( or) \: \frac{ac -  {b}^{2} -  {b}^{2}   -  ac}{2ab} \\  = \frac{2 ac}{2ab} \: (or) \:  \frac{ - 2 {b}^{2} }{2ab}  \\  =  \frac{c}{b}  \: (or) \:  \frac{ - b}{a}

Here's the correct answer to the question.

Similar questions