Math, asked by Potato95, 3 months ago

Solve using the quadratic formula.
•Show all work.
•Write each solution in simplest form.
•No decimals.​

Attachments:

Answers

Answered by WildCat7083
7

 \tt \: x  ^ { 2  }  +2x+7=0 \\

All equations of the form  \tt \: ax^{2}+bx+c=0 can be solved using the quadratic formula:  \tt \: \frac{-b±\sqrt{b^{2}-4ac}}{2a}

The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

 \tt \: x^{2}+2x+7=0  \\

This equation is in standard form:  \tt \: ax^{2}+bx+c=0Substitute 1 for a, 2 for b, and 7 for c in the quadratic formula,  \tt \: \frac{-b±\sqrt{b^{2}-4ac}}{2a}

 \tt \: x=\frac{-2±\sqrt{2^{2}-4\times 7}}{2}  \\  \\  \tt \: x=\frac{-2±\sqrt{4-4\times 7}}{2} \\  \\  \tt \: x=\frac{-2±\sqrt{4-28}}{2} \\  \\  \tt \: x=\frac{-2±\sqrt{-24}}{2}

 \tt \: x=\frac{-2±2\sqrt{6}i}{2}

Now solve the equation  \tt \: x=\frac{-2±2\sqrt{6}i}{2} when ± is plus. Add  \tt \: -2  \: to \:  2i\sqrt{6}

 \tt \: x=\frac{-2+2\sqrt{6}i}{2}

Divide  \tt \: -2+2i\sqrt{6} by 2.

 \sf \: x=-1+\sqrt{6}i

Now solve the equation  \tt \: x=\frac{-2±2\sqrt{6}i}{2} when ± is minus. Subtract  \tt \: 2i\sqrt{6} from -2.

 \tt \: x=\frac{-2\sqrt{6}i-2}{2}  \\  \\  \tt \: x=-\sqrt{6}i-1 \\  \\  \tt \: {{x=-1+\sqrt{6}i}}

 \sf \: @WildCat7083

Answered by mrdeath4
6

Answer:

can We be friends..,???

Similar questions