Math, asked by iTzRiYaNsH, 1 day ago

Solve: √x/1+x + √1+x/x = 5/2​

Answers

Answered by Dalfon
45

Step-by-step explanation:

\implies \:  \sf\sqrt{ \dfrac{x}{1 + x} }  +  \sqrt{ \dfrac{1 + x}{x} }  =  \dfrac{5}{2}

Do squaring on both sides,

\implies \sf {  \big(\sqrt{ \dfrac{x}{1 + x} }\big)}^{2}  +  {  \big(\sqrt{ \dfrac{1 + x}{x} }  \big)}^{2} =  {  \big(\dfrac{5}{2} \big)}^{2}

\implies \:\sf\dfrac{x}{1 + x}   +  \dfrac{1 + x}{x}  =  \dfrac{25}{4}

Take LCM

\implies \sf\dfrac{x(x) + (1 + x)(1 + x)}{x(1 + x)}  =  \dfrac{25}{4}

\implies \sf \dfrac{ {x}^{2}  + 1(1 + x) + x(1 + x)}{x +  {x}^{2} }  =  \dfrac{25}{4}

\implies \sf \dfrac{ {x}^{2}  + 1 + x + x +  {x}^{2} }{x +  {x}^{2} }  =  \dfrac{25}{4}

\implies \sf \dfrac{2 {x}^{2} + 2x + 1 }{ {x}^{2}  + x}  =  \dfrac{25}{4}

\implies \sf4(2 {x}^{2}  + 2x + 1) = 25( {x}^{2}  + x)

\implies \sf8 {x}^{2}  + 8x + 4 = 25 {x}^{2}  + 25x

\implies \sf25 {x}^{2}  - 8 {x}^{2}  + 25x - 8x - 4 = 0

\implies \sf17 {x}^{2}  + 17x - 4 = 0

On solving the quadratic equation 17x² + 17x - 4 = 0 using formula: x = [-b ± √(b² - 4ac)]/2a where the value of a is 17, b is 17 and c is - 4, we get,

\implies \sf \: x =  \frac{ - 17 +   \sqrt{561} }{34}  \: and \: x =  \frac{ - 17  -   \sqrt{561} }{34}

Similar questions