solve x^2+(X+1)^2=41
Answers
Answered by
3
x^2+x^2+1+2x=41
2x^2+2x-40=0
divide by 2 in whole eq.
x^2+x-20=0
x^2-4x+5x-20=0
x(x-4) + 5(x-4)
(x+5) (x-4)
[x=4 and -5]
2x^2+2x-40=0
divide by 2 in whole eq.
x^2+x-20=0
x^2-4x+5x-20=0
x(x-4) + 5(x-4)
(x+5) (x-4)
[x=4 and -5]
Answered by
3
________________________________
x^2 + ( x + 1 )^2 = 41
x^2 + x^2 + 1 + 2x = 41
2x^2 + 2x = 41 - 1
2x^2 + 2x = 40
2( x^2 + x) = 20
x^2 + x -20 = 0
x^2 + 5x - 4x - 20 = 0
x( x + 5) - 4(x+5) = 0
(x-4) (x + 5) =0
So ,
x = 4 & -5 ✔
_____________________________
HOPE IT HELPS UH ✌✌
Anonymous:
Simran inbox me yrr plz
Similar questions