Math, asked by shobhitchola1, 3 months ago

Solve: x^2 - | x | - 12 < 0​

Answers

Answered by samuravadish
0

step \: 1  \:

add \: 12 \: to \: both \: sides.

 {x}^{2}  -  |x|  - 12 + 12 &lt; 0 + 12

 {x}^{2}  -  |x|  =  &lt; 12

step \: 2

Rewrite \:  the \:  inequality \:  \\  without  \: the \:  absolute \:  value.

12 &lt; \:x  &lt; \: 12

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Using definition of |x|, we have

\begin{gathered}\begin{gathered}\bf\:  |x|  = \begin{cases} &amp;\sf{ - x \:  \:  \: when \: x &lt; 0} \\ &amp;\sf{x \:  \:  \: whenx \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So,

Given inequality is

\rm :\longmapsto\: {x}^{2}  -  |x|  - 12 &lt; 0

Two cases arises

Case :- 1

  • When x < 0, we have |x| = - x

So,

\rm :\longmapsto\: {x}^{2}  -  |x|  - 12 &lt; 0

can be rewritten as

\rm :\longmapsto\: {x}^{2}  - ( - x) - 12 &lt; 0

\rm :\longmapsto\: {x}^{2}  + x - 12 &lt; 0

\rm :\longmapsto\: {x}^{2}  + 4x  - 3x- 12 &lt; 0

\rm :\longmapsto\:x(x + 4) - 3(x + 4) &lt; 0

\rm :\longmapsto\:(x + 4)(x - 3) &lt; 0

\bf\implies \: - 4 &lt; x &lt; 3

\rm :\longmapsto\:As \: x &lt; 0

\bf\implies \:x \:  \in \: ( - 4, \: 0) -  -  - (1)

Case :- 2

\rm :\longmapsto\:When \: x \geqslant 0, \: we \: have \:  |x|  = x

So,

\rm :\longmapsto\: {x}^{2}  -  |x|  - 12 &lt; 0

can be rewritten as

\rm :\longmapsto\: {x}^{2}  - (x) - 12 &lt; 0

\rm :\longmapsto\: {x}^{2}  - x - 12 &lt; 0

\rm :\longmapsto\: {x}^{2}  - 4x + 3x - 12 &lt; 0

\rm :\longmapsto\:x(x - 4) + 3(x - 4) &lt; 0

\rm :\longmapsto\:(x - 4)(x + 3) &lt; 0

\bf\implies \: - 3  &lt; x &lt; 4

\rm :\longmapsto\:As \: x \geqslant 0

\bf\implies \:x \:  \in \: [0, 4) -  -  - (1)

So from equation (1) and (2), we concluded that

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \bf \: x \:  \in \: ( - 4, \: 4)}

Additional Information :-

\rm :\longmapsto\:When \:  \: a &lt; b \: then

 \sf \: (x - a)(x - b) &lt; 0 \implies \: a &lt; x &lt; b

 \sf \: (x - a)(x - b)  \leqslant 0 \implies \: a  \leqslant  x  \leqslant  b

 \sf \: (x - a)(x - b)  \geqslant 0 \implies \: x  \leqslant  a \:  \: or \:  \: x  \geqslant  b

 \sf \: (x - a)(x - b)   &gt;  0 \implies \: x  &lt;   a \:  \: or \:  \: x  &gt;   b

Similar questions