Math, asked by ranihima9gmailcom, 1 year ago

solve x^2d^2y/dx^2+4xdy/dx+2y=e^x​

Answers

Answered by pulakmath007
10

SOLUTION

TO SOLVE

\displaystyle \sf{   {x}^{2} \frac{ {d}^{2}y }{d {x}^{2} } + 4x \frac{dy}{dx}  + 2y =  {e}^{x}   }

EVALUATION

Here the given differential equation is

\displaystyle \sf{   {x}^{2} \frac{ {d}^{2}y }{d {x}^{2} } + 4x \frac{dy}{dx}  + 2y =  {e}^{x}   }

Let us assume that

\displaystyle \sf{  x =  {e}^{t}   }

\displaystyle \sf{  \implies \: t =  \log x  }

So the given differential equation becomes

\displaystyle \sf{ \bigg[ \: D(D - 1) + 4D + 2 \bigg]y =  {e}^{ {e}^{t} } }

On simplification we get

\displaystyle \sf{ \bigg[ \: {D}^{2} + 3D + 2 \bigg]y =  {e}^{ {e}^{t} } }

Let

\displaystyle \sf{ y =  {e}^{ mt } }

be the trial solution

Then the auxiliary equation is

 \sf{ {m}^{2} + 3m + 2 = 0 }

\displaystyle \sf{  \implies \: m = - 1  \:  ,\: - 2 }

So the complementary function

= C. F

\displaystyle \sf{ = a \:  {e}^{ - t}   + b \:  {e}^{ - 2t} }

\displaystyle \sf{ = a \:  {e}^{ -  \log x}   + b \:  {e}^{ - 2 \log x} }

\displaystyle \sf{ = a \:  {x}^{ - 1} + b \:   {x}^{ - 2}  }

Where a and b are constants

Now the particular integral

= P. I

\displaystyle \sf{  =  \:  \frac{1}{( \: {D}^{2} + 3D + 2)}  \:   {e}^{ {e}^{t} } }

\displaystyle \sf{  =  \:  \frac{1}{( \: D  + 1)(D + 2)}  \:   {e}^{ {e}^{t} } }

\displaystyle \sf{  =   \frac{1}{( \: D  + 1)}  \:   {e}^{ {e}^{t} } -   \frac{1}{(D + 2)}  \:   {e}^{ {e}^{t} }  }

Now

\displaystyle \sf{   \frac{1}{( \: D  + 1)}  \:   {e}^{ {e}^{t} }  }

\displaystyle \sf{ =    \frac{1}{( \: D  + 1)}  \:   {e}^{ - t} . {e}^{t} . {e}^{ {e}^{t} }  }

\displaystyle \sf{ =   {e}^{ - t} . \frac{1}{( \: D  - 1 + 1)}  \:    {e}^{t} . {e}^{ {e}^{t} }  }

\displaystyle \sf{ =   {e}^{ - t} . \frac{1}{ D  }  \:    {e}^{t} . {e}^{ {e}^{t} }  }

\displaystyle \sf{ =   {e}^{ - t} . \int   {e}^{ {e}^{t} } d({e}^{t}) }

\displaystyle \sf{ =   {x}^{ - 1} . \int   {e}^{x} dx }

\displaystyle \sf{ =   {x}^{ - 1}  \:    {e}^{x} }

Again

\displaystyle \sf{   \frac{1}{( \: D  + 2)}  \:   {e}^{ {e}^{t} }  }

\displaystyle \sf{ =    \frac{1}{( \: D  + 2)}  \:   {e}^{ - 2t} . {e}^{2t} . {e}^{ {e}^{t} }  }

\displaystyle \sf{ =   {e}^{ - 2t} . \frac{1}{( \: D  - 2 + 2)}  \:    {e}^{2t} . {e}^{ {e}^{t} }  }

\displaystyle \sf{ =   {e}^{ - 2t} . \frac{1}{ D  }  \:    {e}^{2t} . {e}^{ {e}^{t} }  }

\displaystyle \sf{ =   {e}^{ - t} . \int  {e}^{t}. {e}^{ {e}^{t} } d({e}^{t}) }

\displaystyle \sf{ =   {x}^{ - 2} . \int   x.{e}^{x} dx }

\displaystyle \sf{ =   {x}^{ - 2} (   x.{e}^{x}  -  {e}^{x} )}

Thus particular integral

\displaystyle \sf{ =   {x}^{ - 1}  \:    {e}^{x}  -    {x}^{ - 2} (   x.{e}^{x}  -  {e}^{x} ) }

\displaystyle \sf{ =   {x}^{ - 1}  \:    {e}^{x}  - {x}^{ - 1}  \:    {e}^{x} +    {x}^{ - 2} {e}^{x}  }

\displaystyle \sf{ =   {x}^{ - 2} {e}^{x}  }

Hence the required required solution

= C. F + P. I

\displaystyle \sf{ = a \:  {x}^{ - 1} + b \:   {x}^{ - 2} +  {x}^{ - 2}  \:  {e}^{x}   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. M+N(dy/dx)=0 where M and N are function of

(A) x only

(B) y only

(C) constant

(D) all of these

https://brainly.in/question/38173299

2. This type of equation is of the form dy/dx=f1(x,y)/f2(x,y)

(A) variable seprable

(B) homogeneous

(C) exact

(D) none ...

https://brainly.in/question/38173619

Answered by barani79530
5

Step-by-step explanation:

please mark as best answer and thank me

Attachments:
Similar questions