Math, asked by sujana, 1 year ago

Solve x^4+1/x^3+x into partial fractions


AvmnuSng: is it (x^3 + x) in denominator ??

Answers

Answered by AvmnuSng
0
\frac{ x^{4} + 1}{ x^{3} + x}

\frac{ x^{4} - 1}{ x^{3} + x} +  \frac{2}{ x^{3} + x}

\frac{( x^{2} - 1) * ( x^{2} + 1)}{(x) * ( x^{2} + 1)} +  \frac{2}{( x^{3} + x)}

\frac{(x^{2} - 1)}{x} + 2 *  (\frac{( (x^{2} + 1) -  x^{2} )}{(x) * ( x^{2} + 1)})

(x -  \frac{1}{x} ) + 2 * ( \frac{1}{x} - \frac{x}{( x^{2} + 1)} )

x +  \frac{1}{x} -  \frac{2x}{( x^{2} + 1)}
Similar questions