Math, asked by aryanyadav39980, 10 months ago

solve X square + 7 x + 12 = 0 by completing the square​

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:x=-4\:and\:3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {x}^{2}  + 7x + 12 = 0 \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Value \: of \: x =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {x}^{2}  + 7x + 12 = 0 \\  \\   \tt \:Both \: side \: adding \: ( \frac{b}{2a} )^{2}  =  (\frac{7}{2 \times 1} )^{2}  =  \frac{49}{4}  \\  \\ \tt:  \implies  {x}^{2}  + 7x +  \frac{49}{4}  + 12 =  \frac{49}{4}  \\  \\ \tt:  \implies  {(x +  \frac{7}{2}) }^{2}  + 12 =  \frac{49}{4}  \\  \\ \tt:  \implies  {(x +  \frac{7}{2}) }^{2}  =  \frac{49}{4}  - 12 \\  \\ \tt:  \implies  {(x  +  \frac{7}{2}) }^{2}  =  \frac{49 - 48}{4}  \\  \\ \tt:  \implies  {(x +  \frac{7}{2}) }^{2}  =  \frac{1}{4}  \\  \\ \tt:  \implies x +  \frac{7}{2}  =  \sqrt{ \frac{1}{4} }  \\  \\ \tt:  \implies x +  \frac{7}{2}  =   \pm\frac{1}{2}  \\  \\ \tt:  \implies x =  \pm \frac{1}{2}   -  \frac{7}{2}  \\  \\ \tt:  \implies x =  \frac{  - 7 \pm 1}{2}  \\  \\  \green{\tt:  \implies x =  - 4  \: and \: 3}

Answered by ғɪɴɴвαłσℜ
2

Aɴꜱᴡᴇʀ

☞ The value of X is -4 or 3

_________________

Gɪᴠᴇɴ

➳ x² + 7x +12 = 0

_________________

Tᴏ ꜰɪɴᴅ

➤ Value of x ?

_________________

Sᴛᴇᴘꜱ

❍ Its given that we have to use only completing square method, so,

In this method we have got to add another variable y so to do that,

 \large \sf{}add \:  \:  { \sf ( \dfrac{ b }{2a}} {)}^{2} \:  \: on \: both \: sides

We get,

 \leadsto{} \sf{} {x}^{2} + 7x + 12 +  \frac{49}{4}  =  \frac{49}{4}  \\  \\  \leadsto \sf{} (x +  \frac{7}{2}  {)}^{2}  +12 =  \frac{49}{4} \\  \\  \leadsto{} \sf(x +  \frac{7}{2} {)}^{2} =  \frac{49 - 48}{4}    \\  \\  \leadsto{} \sf{}(x +  \frac{7}{2}  {)}^{2}  =    \frac{1}{4}  \\  \\  \leadsto \sf(x +  \frac{7}{2})  = \sqrt{ \frac{1}{4} } \\ \\  \leadsto \sf \red{(  x +  \frac{7}{2}) =± \frac{1}{2}}     \\  \\  \leadsto \sf{}x =  \frac{  - 7±1}{2}  \\  \\    \pink{ \leadsto\sf{}x = - 4 \: and \:   3}

______________________

Similar questions