Math, asked by balarajpotlacheruvu, 9 months ago

Solve x+y+10 = 0
and
x-Y
+3=0

Answers

Answered by Vamprixussa
17

Given equations

x+y+10=0

\implies x+y=-10--(1)

x-y+3=0

\implies x-y=-3--(2)

Solving (1) and (2), we get,

x+y=-10\\\underline{x-y=-3}\\\underline{\underline{2x=-13}}

\implies x = \dfrac{-13}{2}

Substituting the value of x in the second equation, we get,

\implies \dfrac{-13}{2} -y=-3

\implies -y = -3 + \dfrac{13}{2}

\implies -y =  \dfrac{-6+13}{2}

\implies -y =  \dfrac{7}{2}

\implies y =  \dfrac{-7}{2}

\boxed{\boxed{\bold{Therefore, \ the \ values \ of \ x \ and \ y \ are \ \frac{-13}{2} \ and \ \frac{-7}{2} \ respectively}}}}}}

                                                       

Answered by Anonymous
6

Answer:

\sf{The \ value \ of \ x \ is \ \frac{-13}{2} \ and \ y \ is \ \frac{-7}{2}.}

Given:

  • The given equations are
  1. x+y+10=0
  2. x-y+3=0

To find:

  • The value of x and y.

Solution:

\sf{The \ given \ equations \ are}

\sf{x+y=-10...(1)}

\sf{x-y+3=0}

\sf{\therefore{x-y=-3...(2)}}

\sf{Add \ equations \ (1) \ and \ (2), \ we \ get}

\sf{x+y=-10}

\sf{+}

\sf{x-y=-3}

______________

\sf{2x=-13}

\boxed{\sf{\therefore{x=\frac{-13}{2}}}}

\sf{Substitute \ x=\frac{-13}{2} \ in \ equation (1)}

\sf{\frac{-13}{2}+y=-10}

\sf{\therefore{y=-10+\frac{13}{2}}}

\sf{\therefore{y=\frac{-20+13}{2}}}

\boxed{\sf{\therefore{y=\frac{-7}{2}}}}

\sf\purple{\tt{\therefore{The \ value \ of \ x \ is \ \frac{-13}{2} \ and \ y \ is \ \frac{-7}{2}.}}}

Similar questions