Math, asked by PuttaSasivardhan, 8 months ago

solve x+y+z=6,x-y+z=2,2x-y+3z=9 using rank method

Answers

Answered by ramakrishnaputtagunt
0

Step-by-step explanation:

Step 1:

The given system of equation is of the form AX=B.

(i. e) 1 2 1

1 0 3

2 −3 0 x

y

z = 7

11

1

Where A = 1 2 1

1 0 3

2 −3 0 , X = x

y

z and

B = 7

11

1

Let us now find the determinant value of A

|A|= 1 2 1

1 0 3

2 −3 0

= 1(0 + 9) − 2(0 − 6) + 1( − 3 − 0)

= 9 + 12 − 3 = 18 ≠ 0.

It is non-singular. it inverse exists.

Step 2:

Next let us find the adjoint of A

A11 = ( − 1) 1+1 0 3

−3 0 =9.

A12 = ( − 1) 1+2 1 3

2 0 =6.

A13 = ( − 1) 1+3 1 0

2 −3 =-3.

A21 = ( − 1) 2+1 2 1

−3 0 =-3.

A22 = ( − 1) 2+2 1 1

2 0 =-2.

A23 = ( − 1) 2+3 1 2

2 −3 =7.

A31 = ( − 1) 3+1 2 1

0 3 =6.

A32 = ( − 1) 3+2 1 1

1 3 =-2.

A33 = ( − 1) 3+3 0 3

−3 0 =-2.

Hence the adjoint of A is

A 11 A21 A31

A 12 A22 A32

A 13 A23 A33

= 9 −3 6

6 −2 −2

−3 7 −2

A −1 = 1

18 9 −3 6

6 −2 −2

−3 7 −2

Step 3:

A −1 B = X,substituting for A −1 ,B and X we get

x

y

z = 1

18 9 −3 6

6 −2 −2

−3 7 −2 7

11

1

= 1

18 63 − 33 + 6

42 − 22 − 2

−21 + 77 − 2 = 36

18

18

18

54

18 = 2

1

3

x

y

z = 2

1

3

x=2,y=1,z=3.

Similar questions