Math, asked by selvalakshmisakthi34, 1 month ago

solve x2ydx-(x2+y3)dy =0​

Answers

Answered by krishsaha25
1

Answer:

3y

3

x

3

=lny+C

here Is ur answer pls mark me as brainliest

Step-by-step explanation:

x

2

ydx−(x

3

+y

3

)dy=0

dy

dx

=

x

2

y

x

3

+y

3

Putting x=vy

dy

dx

=v+y

dy

dv

dy

dx

=

x

2

y

x

3

+y

3

⇒v+y

dy

dv

=

v

2

y

3

v

3

y

3

+y

3

=

v

2

v

3

+1

y

dy

dv

=

v

2

v

3

+1

−v=

v

2

v

3

+1−v

3

=

v

2

1

⇒v

2

dv=

y

dy

(variable separable method)

Integrating both sides

∫v

2

dv=∫

y

dy

3

v

3

=lny+C

Putting v=

y

x

3y

3

x

3

=lny+C

Answered by amansharma264
5

EXPLANATION.

⇒ x²ydx - (x³ + y³)dy = 0.

As we know that,

We can write equation as,

⇒ x²ydx = (x³ + y³)dy.

⇒ dy/dx = (x²y)/(x³ + y³).

⇒ Substitute : y = vx.

⇒ dy/dx = v + x dv/dx.

\implies \dfrac{dy}{dx} = \dfrac{x^{2} y}{(x^{3}  + y^{3} )}

\implies v + x.\dfrac{dv}{dx} = \dfrac{x^{2} (vx)}{[x^{3}  + (vx)^{3} ]}

\implies v + x.\dfrac{dv}{dx}  = \dfrac{x^{3} v}{[x^{3}  + v^{3}x^{3}]  }

\implies v + x.\dfrac{dv}{dx}  = \dfrac{x^{3} (v)}{x^{3}(1 + v^{3} ) }

\implies v + x.\dfrac{dv}{dx}  = \dfrac{v}{1 + v^{3} }

\implies x\dfrac{dv}{dx} = \dfrac{v}{1 + v^{3} } - v

\implies x\dfrac{dv}{dx}  = \dfrac{v - v(1 + v^{3}) }{1 + v^{3} }

\implies x\dfrac{dv}{dx}  = \dfrac{v - v - v^{4} }{1 + v^{3} }

\implies x\dfrac{dv}{dx}  = \dfrac{-v^{4} }{1 + v^{3} }

\implies \dfrac{1 + v^{3} }{v^{4} }dv = \dfrac{-dx}{x}

Integrate both sides of the equation, we get.

\implies \displaystyle \int \dfrac{1 + v^{3} }{v^{4} } dv \ = - \int \dfrac{dx}{x}

\implies \displaystyle \int \bigg( \dfrac{1}{v^{4}} + \dfrac{v^{3} }{v^{4} } \bigg) dv = - \int \dfrac{dx}{x}

\implies \displaystyle \int \dfrac{1}{v^{4} }dv \ + \int \dfrac{dv}{v}  \ = - \int \dfrac{dx}{x}

\implies \displaystyle \int v^{-4} dv \ + \int \dfrac{dv}{v} \ = - \int \dfrac{dx}{x}

\implies \dfrac{v^{-4 + 1} }{-4 + 1} \ + ln|v| \ = - ln|x| + ln|C|

\implies \dfrac{v^{-3} }{-3} \ + ln|v| \ = - ln|x| + ln|C|

\implies \dfrac{-1}{3} . (v)^{-3} \ + ln|v| = - ln|x| + ln|C|

\implies \dfrac{-1}{3} .\bigg(\dfrac{y}{x} \bigg)^{-3} + ln|v| = - ln|x| + ln|C|

\implies -\dfrac{x^{3} }{3y^{3} }  + ln \bigg|\dfrac{y}{x} \bigg| = - ln|x| + ln|C|

\implies -\dfrac{x^{3} }{3y^{3} }   + ln|y| - ln|x| = - ln|x| + ln|C|

\implies -\dfrac{x^{3} }{3y^{3} } + ln|y| = ln|C|

\implies ln|y| + ln|C| = \dfrac{x^{3} }{3y^{3} }

\implies ln|yC| = \dfrac{x^{3} }{3y^{3} }

Similar questions