Math, asked by Abdul38811, 6 months ago

Solve × + y = 14 and × - y = 4 by elimination method

Answers

Answered by Aryan0123
27

Given:

  • x + y = 14 → → → [Equation 1]

  • x - y = 4. → → →. [Equation 2]

To find:

➟ Value of x and y.

Method:

Adding the 2 Equations,

x + y = 14

{+} x - y = 4

2x = 14 + 4

⇒2x = 18

⇒x = 18 ÷ 2

x = 9

Now, Substitute value of x in any one of the Equations to find out the value of y

Here we have Substituted in Equation 2

x - y = 4

⇒9 - y = 4

y = 5

Verification:

Substitute value of x and y in the given Equations to verify

x + y = 14

⇒9 + 5 = 14

⇒14 = 14

LHS = RHS

x - y = 4

⇒9 - 5 = 4

⇒4 = 4

LHS = RHS

Hence verified

Additional information:

  1. For solving linear pair of Equations in 2 variables, we can solve it by either Elimination method or Substitution method.
  2. Elimination method includes either addition of Equations or subtraction of equations.

prince5132: Good !!
Answered by Anonymous
7

Answer:

\boxed{\bold{\large{Answer :}}}

\bold{x = 9}

\bold{y = 5}

\\

Step-by-step explanation:

\boxed{\bold{\large{Question \: :}}}

Solve x + y = 14 and x - y = 4 by elimination method.

\\

\boxed{\bold{\large{Given \: :}}}

✏ x + y = 14⠀‎‏‏⠀⠀⠀— — (1)

✏ x - y = 4 ⠀‎‏‏ ⠀⠀⠀— — (2)

\\

\boxed{\bold{\large{Solution :}}}

Adding Equation (1) and Equation (2). We get ,

⇒ (x + y) + (x - y) = 14 + 4

⇒ x + y + x - y = 18

⇒ 2x = 18

⇒ x = 18/2

⇒ x = 9

\\

Now putting the value of x in Equation (1). We get ,

⇒ x + y = 14

⇒ 9 + y = 14

⇒ y = 14 - 9

⇒ y = 5

\\

\boxed{\bold{\large{Answer :}}}

\bold{x = 9}

\bold{y = 5}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\boxed{\bold{\mapsto \: Confused\: \: \: let's \: \: \: \: verify \: \: :)}}

\\

\bold{x = 9}

\bold{y = 5}

\\

Putting the values of x and y in Equation (1). We get ,

✏ x + y = 14

\\

x + y

= 9 + 5

= 14

\\

\bold{x \: + y = 14}

\bold{Verified \: !}

\\

\\

✏ x - y = 4 ⠀‎‏‏ ⠀⠀— — (2)

\\

9 - 4

= 5

\\

\bold{x \: - y = 4}

\bold{Verified \: !}

\\

Now we are confirmed that our answer is correct.

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

❤️ Happy Studying ! ☺️


prince5132: Nice !!
Similar questions