Math, asked by amanyadav06566, 10 months ago

solve (y+7)/7=1+(3y-2)/5​

Answers

Answered by Anonymous
27

\huge\underline\mathrm\purple{Question}

solve (y+7)/7=1+(3y-2)/5

\huge\underline\mathrm\purple{Find\:out}

Value of y

\huge\underline\mathrm\purple{Solution}

\implies\sf \frac{(y+7)}{7}=1+\frac{(3y-2)}{5}

\implies\sf \frac{(y+7)}{7}-\frac{(3y-2)}{5}=1

\implies\sf \frac{5(y+7)-7(3y-2)}{35}=1

\implies\sf \frac{(5y+35)-21y+14}{35}=1

\implies\sf \frac{-16y+49}{35}=1

\implies\sf -16y+49=35

\implies\sf -16y = -49+35

\implies\sf y=\cancel\frac{14}{16}=\frac{7}{8}

\huge\underline\mathrm\purple{NoTE}

  • Same sign = addition
  • opposite sign = subtraction

Answered by MяƖиνιѕιвʟє
6

\bold{\huge{\fbox{\color{Black}{Question}}}}

 \frac{y + 7}{7}  = 1 +  \frac{3y - 2}{5}

\bold{\huge{\fbox{\color{Black}{Find}}}}

Value of y

\bold{\huge{\fbox{\color{Black}{Solution}}}}

=>  \frac{y + 7}{7}  = 1 +  \frac{3y - 2}{5}  \\=>   \frac{y + 7}{7}  -  \frac{3y - 2}{5}  = 1 \\ => \frac{5(y + 7)}{7 \times 5}  -  \frac{7(3y - 2)}{5 \times 7}  = 1 \\ =>  \frac{5y + 35 - 21y + 14}{35}  = 1 \\  =>   \frac{5y - 21y + 35 + 14}{35}  = 1 \\   =>  \frac{ - 16y + 49}{35} = 1 \\ => - 16y + 49 = 35 \times 1 \\=>  - 16y = 35 - 49 \\=>  - 16y =  - 14 \\=> y =  \frac{ - 14}{ - 16}  \\=> y =  \frac{7}{8}

Hence,

=> y = 7/8

Similar questions