solve your questions
Answers
Answer:
3(a+b)(b+c)(c+a)
Step-by-step explanation:
To find--->
-----------
(b²-c²)³+(c²-a²)³+(a²-b²)³
----------------------------------------
(b-c)³+(c-a)³+(a-b)³
Solution--->
--------------
first we find value of numerator
for this let
b²-c²=p , c²-a²=q ,a²-b²=r
now
p+q+r=b²-c² + c²-a²+a²-b²
all terms cancel each other so
p + q + r =0
so
p³ + q³ + r³ = 3 p q r
( b²-c²)³+(c²-a²)³+(a²-b²)³=
3(b²-c²)(c²-a²)(a²-b²)
now cocentrating on denominator
(b-c)³+ (c-a)³+ (a-b)³
let
(b-c)=x ,(c-a)=y,(a-b)=z
x+y+z=b-c+c-a+a-b
terms cancel each other in RHS
x+y+z=0
so
x³+y³+z³=3xyz
(b-c)³+(c-a)³+(a-b)³=3(b-c)(c-a)(a-b)
now returning to original problem
(b²-c²)³+(c²-a²)³+(a²-b²)³
--------------------------------------
(b-c)³+(c-a)³+(a-b)³
3(b²-c²)(c²-a²)(a²-b²)
=-----------------------------------
3(b-c)(c-a)(a-b)
now we have an identity u²-v²=(u+v)(u-v)
applying it in numerator
3(b+c)( b- c)( c+a) (c- a) (a+ b) (a- b )
=-----------------------------------------------------------
3 (b-c)(c-a)(a-b)
3(b+c)(c+a)(a+b) cancel out from numerator and denominator
=3(b+c)(c+a)(a+b)
=3(a+b)(b+c)(c+a)
Hope it helps u