solveeeeeeeeeeeeeeeeeeeeeeeeeeee
if possible solve in ur copy
Attachments:
Answers
Answered by
7
=======================
Given,
Quadratic equation = x² - 2x + 3.
Here,
Coefficient of x² = 1
Coefficient of x = -2
Constant term = 3
α and ß are its zeroes.
We know the relationship between zeroes and coefficient of a quadratic equation,
⇒ Sum of zeroes = - Coefficient of x ÷ Coefficient of x²
⇒ α + ß = - ( -2 ) ÷ 1
∴ α + ß = 2
Now,
⇒ Product of zeroes = Constant term ÷ Coefficient of x²
⇒ αß = 3 ÷ 1
∴ αß = 3.
For 1st question,
⇒ Sum of zeroes = α + 2 + ß + 2
= α + ß + 4
= 2 + 4 = 6.
Product of zeroes = ( α + 2 ) ( ß + 2 )
= αß + 2α + 2ß + 4
= αß + 4 + 2 ( α + ß )
By substituting the values of αß and ( α + ß ).
= 3 + 4 + 2 ( 2 )
= 3 + 4 + 4 = 11.
The general form of a quadratic equation :
⇒ x² - ( Sum of zeroes ) x + Product of zeroes = 0
⇒ x² - 6x + 11 = 0
For 2nd question,
Sum of zeroes = { ( α - 1 ) / ( α + 1 ) } + { ( ß - 1 ) / ( ß + 1 ) }
( α - 1 ) ( ß + 1 ) + ( ß - 1 ) ( α + 1 )
= ---------------------------------------------------------
( α + 1 ) ( ß + 1 )
αß + α- ß - 1 + αß + ß - α - 1
= -----------------------------------------------
αß + α + ß + 1
2αß - 2
= --------------------------------------
αß + α + ß + 1
By substituting the values of αß and ( α + ß ),
2 × 3 - 2
= ------------------------------------
3 + 2 + 1
6 - 2
= ---------------------------
6
= 4/6 = 2/3.
Product of zeroes = { ( α - 1 ) / ( α + 1 ) } { ( ß - 1 ) / ( ß + 1 ) }
( α - 1 ) ( ß - 1 )
= --------------------------------------
( α + 1 ) ( ß + 1 )
αß - α - ß + 1
= ---------------------------------
αß + α + ß + 1
αß + 1 - ( α + ß )
= ---------------------------
αß + 1 + ( α + ß )
By substituting the values of αß and ( α + ß ),
3 + 1 - 2
= --------------------------------
3 + 1 + 2
4 - 2
= -------------------------
6
= 2/6 = 1/3.
The general form of a quadratic equation is :
⇒ x² - ( Sum of zeroes )x + Product of zeroes = o
⇒ x² - ( 2/3 )x + ( 1/3 ) = 0
3x² - 2x + 1
⇒ ------------------------- = 0
3
⇒ ( 3x² - 2x + 1 ) = 0 × 3
⇒ 3x² - 2x + 1 = 0.
The required quadratic equation is 3x²- 2x + 1.
Sorry Bro, I didn't solve it in note-book.
Given,
Quadratic equation = x² - 2x + 3.
Here,
Coefficient of x² = 1
Coefficient of x = -2
Constant term = 3
α and ß are its zeroes.
We know the relationship between zeroes and coefficient of a quadratic equation,
⇒ Sum of zeroes = - Coefficient of x ÷ Coefficient of x²
⇒ α + ß = - ( -2 ) ÷ 1
∴ α + ß = 2
Now,
⇒ Product of zeroes = Constant term ÷ Coefficient of x²
⇒ αß = 3 ÷ 1
∴ αß = 3.
For 1st question,
⇒ Sum of zeroes = α + 2 + ß + 2
= α + ß + 4
= 2 + 4 = 6.
Product of zeroes = ( α + 2 ) ( ß + 2 )
= αß + 2α + 2ß + 4
= αß + 4 + 2 ( α + ß )
By substituting the values of αß and ( α + ß ).
= 3 + 4 + 2 ( 2 )
= 3 + 4 + 4 = 11.
The general form of a quadratic equation :
⇒ x² - ( Sum of zeroes ) x + Product of zeroes = 0
⇒ x² - 6x + 11 = 0
For 2nd question,
Sum of zeroes = { ( α - 1 ) / ( α + 1 ) } + { ( ß - 1 ) / ( ß + 1 ) }
( α - 1 ) ( ß + 1 ) + ( ß - 1 ) ( α + 1 )
= ---------------------------------------------------------
( α + 1 ) ( ß + 1 )
αß + α- ß - 1 + αß + ß - α - 1
= -----------------------------------------------
αß + α + ß + 1
2αß - 2
= --------------------------------------
αß + α + ß + 1
By substituting the values of αß and ( α + ß ),
2 × 3 - 2
= ------------------------------------
3 + 2 + 1
6 - 2
= ---------------------------
6
= 4/6 = 2/3.
Product of zeroes = { ( α - 1 ) / ( α + 1 ) } { ( ß - 1 ) / ( ß + 1 ) }
( α - 1 ) ( ß - 1 )
= --------------------------------------
( α + 1 ) ( ß + 1 )
αß - α - ß + 1
= ---------------------------------
αß + α + ß + 1
αß + 1 - ( α + ß )
= ---------------------------
αß + 1 + ( α + ß )
By substituting the values of αß and ( α + ß ),
3 + 1 - 2
= --------------------------------
3 + 1 + 2
4 - 2
= -------------------------
6
= 2/6 = 1/3.
The general form of a quadratic equation is :
⇒ x² - ( Sum of zeroes )x + Product of zeroes = o
⇒ x² - ( 2/3 )x + ( 1/3 ) = 0
3x² - 2x + 1
⇒ ------------------------- = 0
3
⇒ ( 3x² - 2x + 1 ) = 0 × 3
⇒ 3x² - 2x + 1 = 0.
The required quadratic equation is 3x²- 2x + 1.
Sorry Bro, I didn't solve it in note-book.
Answered by
2
Hey mate!
Here's the answer of (1)....
Kindly refer to the given attachment.
Hope it helps you!!
Here's the answer of (1)....
Kindly refer to the given attachment.
Hope it helps you!!
Attachments:
Similar questions