Math, asked by shruti6866, 10 months ago

solving equation 6x^4+11x^3-9x^2-11x+6=0 what are the roots ​

Answers

Answered by amitnrw
12

Given :   6x⁴  + 11x³   - 9x²  - 11x  +  6  = 0

To find  : Roots

Solution:

6x⁴  + 11x³   - 9x²  - 11x  +  6  = 0

Dividing by x²

=> 6x²  + 11x    - 9   - 11/x  +  6/x²  = 0

=> 6(x² + 1/x²)   + 11(x - 1/x)  -  9 = 0

=> 6(x - 1/x)² + 12  + 11(x - 1/x)  -  9 = 0

=> 6(x - 1/x)² +  11(x - 1/x)  + 3  = 0

Let say x - 1/x = y

=> 6y²  + 11y + 3 = 0

=> 6y² + 9y + 2y + 3 = 0

=> 3y(2y + 3) + 1(2y  + 3) = 0

=> (3y + 1)(2y + 3) = 0

=> y = - 1/3  ,  y = -3/2

x - 1/x  =  -1/3

=> 3x²  - 3  = - x

=> 3x² + x - 3 = 0

=> x =  (- 1  ± √37 )/6

x - 1/x  =  -3/2

=> 2x²  - 2  = - 3x

=> 2x² + 3x - 2 = 0

=>  2x² + 4x - x - 2 = 0

=> 2x(x + 2) - 1(x + 2) = 0

=> (2x - 1)(x + 2)  = 0

=> x  = 1/2  , - 2

x =  (- 1  ± √37 )/6  , 1/2 , - 2

Learn more:

if 2 + root 3 and 2 minus root 3 are the two zeros of the polynomial 2 ...

https://brainly.in/question/8973942

Let f(x)=x2+ax+b. if for all non zero real xf(x+1/x)=f(x)+f(1/x)

https://brainly.in/question/11776274

Similar questions