solving the equation (1+x)⅔+(1-x)⅔=4(1-x²)⅓ the values of x
Answers
Answered by
2
(1+x)2/3+(1-x) 2/3=4(1-x
Attachments:
Answered by
1
Answer:
(1+x)2/3+(1-x) 2/3=4(1-x
\begin{gathered}(1 + x)2 \div 3 + (1 - x)2 \div 3 = 4(1 - {x}^{2} )1 \div 3 \\ 2 \div 3 + 2 \div 3x + 2 \div 3 - 2 \div 3x = 4 - 4 {x}^{2} \times 1 \div 3 \\ 2 \div 3 + 2 \div 3 = 4 - 4 {x}^{2} \times 1 \div 3 \\ 4 \div 3 = 4 - 4 {x}^{2} \times 1 \div 3 \\ 4 \div 3 \times 3 = 4 - 4 {x}^{2} \\ 4 = 4 - 4 {x}^{2} \\ 4 {x}^{2} = 4 - 4 \\ 4 {x}^{2} = 0 \\ {x }^{2} = 0 \div 4 \\ x = 0\end{gathered}
(1+x)2÷3+(1−x)2÷3=4(1−x
2
)1÷3
2÷3+2÷3x+2÷3−2÷3x=4−4x
2
×1÷3
2÷3+2÷3=4−4x
2
×1÷3
4÷3=4−4x
2
×1÷3
4÷3×3=4−4x
2
4=4−4x
2
4x
2
=4−4
4x
2
=0
x
2
=0÷4
x=0
Similar questions