Math, asked by preetanmol9783, 11 months ago

solving the equation (1+x)⅔+(1-x)⅔=4(1-x²)⅓ the values of x

Answers

Answered by jenil34
2

(1+x)2/3+(1-x) 2/3=4(1-x

(1 + x)2 \div 3 + (1 - x)2 \div 3 = 4(1 -  {x}^{2}  )1 \div 3 \\ 2 \div 3 + 2 \div 3x + 2 \div 3 - 2 \div 3x = 4 - 4  {x}^{2}  \times 1 \div 3 \\ 2 \div 3 + 2 \div 3 = 4 - 4 {x}^{2}  \times 1 \div 3 \\ 4 \div 3 = 4 - 4 {x}^{2}  \times 1 \div 3 \\ 4 \div 3 \times 3 = 4 - 4 {x}^{2}  \\ 4 = 4 - 4 {x}^{2}  \\ 4 {x}^{2}  = 4 - 4 \\ 4 {x}^{2}  = 0 \\  {x }^{2}  = 0 \div 4 \\ x = 0

Attachments:
Answered by Shahzeb786
1

Answer:

(1+x)2/3+(1-x) 2/3=4(1-x

\begin{gathered}(1 + x)2 \div 3 + (1 - x)2 \div 3 = 4(1 - {x}^{2} )1 \div 3 \\ 2 \div 3 + 2 \div 3x + 2 \div 3 - 2 \div 3x = 4 - 4 {x}^{2} \times 1 \div 3 \\ 2 \div 3 + 2 \div 3 = 4 - 4 {x}^{2} \times 1 \div 3 \\ 4 \div 3 = 4 - 4 {x}^{2} \times 1 \div 3 \\ 4 \div 3 \times 3 = 4 - 4 {x}^{2} \\ 4 = 4 - 4 {x}^{2} \\ 4 {x}^{2} = 4 - 4 \\ 4 {x}^{2} = 0 \\ {x }^{2} = 0 \div 4 \\ x = 0\end{gathered}

(1+x)2÷3+(1−x)2÷3=4(1−x

2

)1÷3

2÷3+2÷3x+2÷3−2÷3x=4−4x

2

×1÷3

2÷3+2÷3=4−4x

2

×1÷3

4÷3=4−4x

2

×1÷3

4÷3×3=4−4x

2

4=4−4x

2

4x

2

=4−4

4x

2

=0

x

2

=0÷4

x=0

Similar questions