Math, asked by Anonymous, 5 months ago

solvw these questions ​

Attachments:

Answers

Answered by hotcupid16
5

Given to evaluate,

\displaystyle\longrightarrow I=\int\limits_0^a\int\limits_0^{\sqrt{a^2-y^2}}\sqrt{a^2-x^2-y^2}\ dx\ dy

or,

\displaystyle\longrightarrow I=\int\limits_0^a\left[\int\limits_0^{\sqrt{a^2-y^2}}\sqrt{(a^2-y^2)-x^2}\ dx\right]\ dy

Let \sqrt{a^2-y^2}=c which is treated as a constant wrt x. Then,

\displaystyle\longrightarrow I=\int\limits_0^a\left[\int\limits_0^c\sqrt{c^2-x^2}\ dx\right]\ dy

\displaystyle\longrightarrow I=\int\limits_0^a\left[\dfrac{x}{2}\sqrt{c^2-x^2}+\dfrac{c^2}{2}\sin^{-1}\left(\dfrac{x}{c}\right)\right]_0^c\ dy

\displaystyle\longrightarrow I=\int\limits_0^a\left(\dfrac{\pi c^2}{4}\right)\ dy

\displaystyle\longrightarrow I=\dfrac{\pi}{4}\int\limits_0^ac^2\ dy

\displaystyle\longrightarrow I=\dfrac{\pi}{4}\int\limits_0^a\left(a^2-y^2\right)\ dy

\displaystyle\longrightarrow I=\dfrac{\pi}{4}\left[a^2y-\dfrac{y^3}{3}\right]_0^a

\displaystyle\longrightarrow I=\dfrac{\pi}{4}\left(a^3-\dfrac{a^3}{3}\right)

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{\pi a^3}{6}}}

Answered by Anonymous
1

Step-by-step explanation:

Given :

Area of rhombus = 120 cm²

Length of diagonal = 8 cm

To find :

Length of another diagonal

According to the question,

\sf{ :  \implies Area \: of \: rhombus =  \dfrac{1}{2}  \times d _{1} \times d_{2}   }

 \\

 \sf  : \implies{ {120 \: cm}^{2} =  \dfrac{1}{2}   \times 8 \: cm \times x}

 \\

 \sf :  \implies{ {120 \: cm}^{2} \times 2 = 8 \: cm \times x }

 \\

 \sf :  \implies{ {240 \: cm}^{2}  = 8 \: cm \times x}

 \\

 \sf  : \implies{ \dfrac{240}{8}  \: cm = x}

 \\

 { \underline{ \boxed{  \sf  \pink{ :  \implies{   \bm3 \bm0 \: c m =x}}}}}

{ \therefore{ \underline{\sf{So \:,the \:  length \:  of \:  other \:  diagonal  \: is \:    3 0 \: cm}}}}

Similar questions