Math, asked by hermionegranger1711, 4 months ago

Someone please help ​

Attachments:

Answers

Answered by PharohX
3

Answer:

 \large{ \green { \rm \: SOLUTION :  - }}

 \sf \large  \bigg \{ \frac{ \big( {9}^{n +  \frac{1}{4} } \big) \sqrt{3. {3}^{n} }  }{3 \sqrt{ {3}^{ - n} } }  \bigg \}^{ \frac{1}{n} }  \\  \\

 =  \sf \large  \bigg \{ \frac{ \big( {3}^{2(n +  \frac{1}{4}) } \big) \sqrt{ {3}^{n + 1} }  }{3.3 ^{ (\frac{ - n}{2}) } }  \bigg \}^{ \frac{1}{n} }   \\

 =  \sf \large  \bigg \{ \frac{ \big( {3}^{(2n +  \frac{1}{2}) } \big) {3}^{ \frac{n + 1}{2} }   }{3 ^{ (\frac{ - n}{2} + 1 )} }  \bigg \}^{ \frac{1}{n} }   \\

  = \sf \large  \bigg \{   {3}^{(2n +  \frac{1}{2} +  \frac{n + 1}{2}  -  (\frac{ - n}{2}  + 1)  } \bigg \}^{ \frac{1}{n} }   \\

 =  \sf \large  \bigg \{   {3}^{(2n + \frac{n}{2} +  \frac{n}{2}  +  \frac{1}{2}    +  \frac{1}{2} - 1  } \bigg \}^{ \frac{1}{n} }   \\

 =  \sf \large  \bigg \{   {3}^{(2n +n +  \cancel1-  \cancel1  } \bigg \}^{ \frac{1}{n} }   \\

  = \sf \large  \bigg \{   {3}^{(3n) } \bigg \}^{ \frac{1}{n} }   \\

 =  \sf \large  \bigg \{   {3}^{( \frac{3n}{n} ) } \bigg \}\\

 \sf \:  =  {3}^{3}

 \sf \:  = 27

 \sf \: Hence   \:  \:  \boxed{  \large \: \tt\green A \blue n \pink{s} \orange{w} \gray{e} \red{r} \: \green{ is \:  27}}

Similar questions