someone urgently solve this ????
Attachments:
Answers
Answered by
1
I m representing herr mode by big bracket,
then
[(Z1+Z2+1)/(Z1-Z2+i)] = [(2-i+1+i+1)/(2-i-1-i+i)],
=[4/(1+i)],
=[4(1-i)/{(1+i)(1-i)}],
=[4(1-i)/(1²-i²)],
=[4(1-i)/(1--1)],
=[4(1-i)/2],
=[2(1-i)],
=[(2-2i)],
= √{2²+(-2)²},
=√(4+4),
=√8,
=2√2
then
[(Z1+Z2+1)/(Z1-Z2+i)] = [(2-i+1+i+1)/(2-i-1-i+i)],
=[4/(1+i)],
=[4(1-i)/{(1+i)(1-i)}],
=[4(1-i)/(1²-i²)],
=[4(1-i)/(1--1)],
=[4(1-i)/2],
=[2(1-i)],
=[(2-2i)],
= √{2²+(-2)²},
=√(4+4),
=√8,
=2√2
gulnarrizvi:
ok sir
Similar questions