Sperm cells swim through liquid. Explain how a sperm cell is adapted to reduce friction as it swims
Answers
Explanation:
Like salmon traveling upstream to spawn, sperm cells are extremely efficient at swimming against the current, according to research to be published this week.
The discovery, to be published in the journal eLife by researchers at MIT and Cambridge University, may help us to understand how some sperm travel such long distances, through difficult terrain, to reach and fertilize an egg.
Of the hundreds of millions of sperm cells that begin the journey up the oviducts, only a few hardy travelers will ever reach their destination. Not only do the cells have to swim in the right direction over distances that are around 1,000 times their own length, but they are exposed to different chemicals and currents along the way.
While we know that sperm cells can “smell” chemicals given off by the egg once they get very close to it, this does not explain how they navigate for the majority of their journey, says Jörn Dunkel, an assistant professor of mathematics at MIT, and a member of the research team.
“We wanted to know which physical mechanisms could be responsible for navigation,” says Dunkel, who carried out the research alongside Vasily Kantsler of the Skolkovo Institute of Science and Technology and the University of Warwick (and currently visiting at MIT); Raymond E. Goldstein of Cambridge; and Martyn Blayney of the Bourn Hall Clinic in the U.K. “If you think of salmon, for example, they can swim against the stream, and the question was whether something similar could really be confirmed for human sperm cells.”
Answer:
Explanation:
The acrosome in the head contains enzymes so that a sperm can penetrate an egg. The middle piece is packed with mitochondria to release energy needed to swim and fertilise the egg. The tail enables the sperm to swim.