Math, asked by jaingarvit846, 5 months ago


spherical ball is divided into two equal halves. If the curved surface area of each half is 56.57 cm?, find the volume of the spherical ball.​

Answers

Answered by kungammajohnsonjohns
0

Answer:

80 km + 50 km -50+50km = 150 cm

Answered by Anonymous
50

The volume of the sphere is 113.04 cm³

Step-by-step explanation:

Solution:

  • Radius of the Hemisphere:
  • Curved surface of half of the spherical ball is 56.57 cm²

\boxed{\sf{CSA \: of \: hemisphere = 2\pi {r}^{2}}}

\sf{\longrightarrow} \: 2\pi{r}^{2} = 56.5

\sf{\longrightarrow} \: {r}^{2} = \dfrac{56.57}{2} \times \pi

\sf{\longrightarrow} \: {r}^{2} = \dfrac{56.57}{2} \times 3.14

\sf{\longrightarrow} \: {r}^{2} = 9

\sf{\longrightarrow} \: {r}= 3

Radius of the Hemisphere = 3 cm

\rule{300}{1.5}

Volume of the sphere:

\boxed{\sf{Volume \: of \: the \: sphere= \frac{4}{3}\pi r^{3}}}

\sf{\longrightarrow} \: \dfrac{4}{3}\pi (3)^{3}

\sf{\longrightarrow} \: \dfrac{4}{3} \times 3.14 \times (3)^{3}

\sf{\longrightarrow} \: \dfrac{4}{3} \times 3.14 \times 27

\sf{\longrightarrow} \: 12.56 \times 9

\sf{\longrightarrow} \: 113.04 \: {cm}^{3}

Therefore, the volume of the sphere is 113.04 cm³

Similar questions