Math, asked by pratzzchaudhry, 3 months ago

sqrt{1 + cos 30} \div \sqrt{1 - cos 30} - tan60 = cosec30
1+cos30

÷
1−cos30

−tan60=cosec30
Prove ​
THE ANSWER OF THIS QUESTION ..​

Attachments:

Answers

Answered by ItzArchimedes
73

Correct question :-

\sf \small\sqrt{\dfrac{1 + cos30\degree}{1-cos30\degree}} = ?

Solution :-

By rationalising the denominator ,

\sf\dashrightarrow \small \sqrt{\dfrac{1 + cos30\degree}{1-cos30\degree}\times \dfrac{1+cos30\degree}{1+cos30\degree}}

\sf \dashrightarrow \small \sqrt{\dfrac{(1+cos30\degree)^2}{(1-cos30\degree)(1+cos30\degree)}}

\qquad \small\sf \bullet \; (a+b)(a-b) = a^2-b^2

\sf \dashrightarrow \small \dfrac{\sqrt{(1+cos30\degree)^2}}{\sqrt{1 - cos^230\degree}}

\sf \dashrightarrow \small \dfrac{1+cos30\degree}{\sqrt{sin^230\degree}}

 \sf \dashrightarrow \small \dfrac{1}{sin30\degree} + \dfrac{cos30\degree}{sin30\degree}

 \sf \dashrightarrow \small cosec30\degree + cot30\degree

 \sf \dashrightarrow \small 2 + \sqrt3

\boldsymbol\therefore \underline{\sf \green{Hence , \; \sqrt{\dfrac{1 + cos30\degree}{1-cos30\degree}} = 2 + \sqrt3 }}

Answered by llsmilingsceretll
7

\sf \small\sqrt{\dfrac{1 + cos30\degree}{1-cos30\degree}} = ?

Solution :-

  • By rationalising the denominator ,

\sf\dashrightarrow \small \sqrt{\dfrac{1 + cos30\degree}{1-cos30\degree}\times \dfrac{1+cos30\degree}{1+cos30\degree}}

\sf \dashrightarrow \small \sqrt{\dfrac{(1+cos30\degree)^2}{(1-cos30\degree)(1+cos30\degree)}}

\qquad \small\sf \bullet \; (a+b)(a-b) = a^2-b^2∙(a+b)

\sf \dashrightarrow \small \dfrac{\sqrt{(1+cos30\degree)^2}}{\sqrt{1 - cos^230\degree}}

\sf \dashrightarrow \small \dfrac{1+cos30\degree}{\sqrt{sin^230\degree}}

\sf \dashrightarrow \small \dfrac{1}{sin30\degree} + \dfrac{cos30\degree}{sin30\degree}

\sf \dashrightarrow \small cosec30\degree + cot30\degree

\sf \dashrightarrow \small 2 + \sqrt3

\boldsymbol\therefore \underline{\sf {Hence , \; \sqrt{\dfrac{1 + cos30\degree}{1-cos30\degree}} = 2 + \sqrt3 }}

Similar questions