Math, asked by mushtaqshena007, 1 month ago

square root
by prime factorization III) 7.29​

Answers

Answered by anand9905033433
2

Answer:

729 is a perfect square number which is obtained by square of 27. Hence, the square root of 729 is a rational number.

Step-by-step explanation:

please mark as brainliest please request

Attachments:
Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given number is

\purple{\rm :\longmapsto\: \sqrt{7.29}}

can be rewritten as

\purple{\rm \:  =  \:  \sqrt{\dfrac{729}{100} } }

Now, Let find the prime factors of 729 and 100

So, Consider

\red{\rm :\longmapsto\:Prime \:  factorization \: of \: 729}

 \red{\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:729 \:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:243 \:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:81\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:27 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3 \:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}}

Thus,

\red{\rm :\longmapsto\:Prime \:  factorization \: of \: 729 =3.3.3.3.3.3}

Now Consider

\green{\rm :\longmapsto\:Prime \:  factorization \: of \: 100}

 \green{\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:100 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:50 \:\:}} \\\underline{\sf{5}}&\underline{\sf{\:\:25\:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5\:\:}} \\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}}

Thus,

\green{\rm :\longmapsto\:Prime \:  factorization \: of \: 100 = 2.2.5.5}

So, Now Consider

\purple{\rm \:  =  \:  \sqrt{\dfrac{729}{100} } }

\purple{\rm \:  =  \:  \sqrt{\dfrac{ \underbrace{3.3} \: \underbrace{3.3} \: \underbrace{3.3}}{\underbrace{2.2} \: \underbrace{5.5}} } }

\purple{\rm \:  =  \: \dfrac{3 \times 3 \times 3}{2 \times 5} }

\purple{\rm \:  =  \: \dfrac{27}{10} }

\purple{\rm \:  =  \: 2.7}

Hence,

\purple{\rm \implies\:\boxed{ \tt{ \:  \sqrt{7.29} \:  =  \: 2.7 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

1. The number of digits in square root of 2n digits is n.

2. The number of digits in square root of (2n + 1) digits is n.

3. Between squares of any two consecutive natural numbers n and n + 1 is always 2n.

4. Perfect square number can never end with the digit 2, 3, 7, 8 and odd number of zeroes.

Similar questions