Math, asked by emronducalan12, 5 months ago

square root learning task 2 A.tell whether each of the following is a rational or irrational if it is rational give the principal root

Answers only
1
2
3
4
5

PLS HELP​

Answers

Answered by munwarlashari43
7

Answer:

Suppose the tower be line AB.

therefore, height of the tower = AB

It is given that, from the point on the other bank directly opposite the tower, angle of elevation of the top of the tower is 60°.

therefore,\displaystyle{\sf{ \angle ACB = 60°}}∠ACB=60°

Again, angle of the elevation from the point D to the top of the tower = 30°

therefore,\displaystyle{\sf{ \angle ADB = 30°}}∠ADB=30°

and DC = 20 m.

To Find : the height of the tower AB and the width of the canal BC.

because the tower is perpendicular to the ground.

\displaystyle{\sf{ \angle ABD = 90°}}∠ABD=90°

In right angled triangle ACB,

\displaystyle{\sf{tan\:C = \dfrac{side\:opposite\:to\:angle\:C}{side\:adjacent\:to\:angle\:C}}}tanC=

sideadjacenttoangleC

sideoppositetoangleC

:\Rightarrow{\sf{tan\:60°= \dfrac{AB}{BC}}}⇒tan60°=

BC

AB

:\Rightarrow{\sf{ \sqrt{3} = \dfrac{AB}{BC}}}⇒

3

=

BC

AB

:\Rightarrow{\sf{ \sqrt{3}BC = AB\:\:\:\:...(1)}}⇒

3

BC=AB...(1)

In right triangle ADB,

\displaystyle{\sf{tan\:D = \dfrac{side\:opposite\:to\:angle\:D}{side\:adjacent\:to\:angle\:D}}}tanD=

sideadjacenttoangleD

sideoppositetoangleD

:\Rightarrow{\sf{tan\:30°= \dfrac{AB}{BD}}}⇒tan30°=

BD

AB

:\Rightarrow{\sf{ \dfrac{1}{ \sqrt{3}}= \dfrac{AB}{BD}}}⇒

3

1

=

BD

AB

:\Rightarrow{\sf{ \dfrac{1}{ \sqrt{3}}= \dfrac{AB}{BD}}}⇒

3

1

=

BD

AB

:\Rightarrow{\sf{ \dfrac{BD}{ \sqrt{3}}=AB\:\:\:...(2)}}⇒

3

BD

=AB...(2)

From (1) and (2),we get

:\Rightarrow{\sf{ \sqrt{3}BC = \dfrac{BD}{ \sqrt{3}}}}⇒

3

BC=

3

BD

:\Rightarrow{\sf{ \sqrt{3}BC \times \sqrt{3}= BD}}⇒

3

BC×

3

=BD

:\Rightarrow{\sf{ 3BC = BD}}⇒3BC=BD

:\Rightarrow{\sf{ 3BC = BC+CD}}⇒3BC=BC+CD

:\Rightarrow{\sf{ 3BC = BC+20}}⇒3BC=BC+20

:\Rightarrow{\sf{ 3BC - BC= 20}}⇒3BC−BC=20

:\Rightarrow{\sf{ 2BC= 20}}⇒2BC=20

:\Rightarrow{\sf{ BC= \dfrac{20}{2}}}⇒BC=

2

20

:\Rightarrow{\sf{ BC= 10}}⇒BC=10

\large{\boxed{\sf{\red{Hence,\:the\:width\:of\:the\:canal\:is\:10m}}}}

Hence,thewidthofthecanalis10m

From (1),

:\Rightarrow{\sf{ \sqrt{3}BC = AB}}⇒

3

BC=AB

:\Rightarrow{\sf{ \sqrt{3}10 = AB}}⇒

3

10=AB

:\Rightarrow{\sf{AB=10 \sqrt{3}}}⇒AB=10

3

\large{\boxed{\sf{\red{Hence,\:the\:height\:of\:the\:tower\:is\:10 \sqrt{3}m}}}}

Hence,theheightofthetoweris10

3

m

Answered by missziddi00034
7

3 is irrational number......

hope it helps you

Similar questions