Math, asked by nikkiomquestion, 8 months ago

squaring 2x²-5x +3 =0 by complete squaring method​

Answers

Answered by karannnn43
0

2 {x}^{2}  - 5x + 3 = 0

Multiply both sides of equation by 2 .

4 {x}^{2}  - 10x + 6 = 0 \\  =  >  {(2x)}^{2}  - 2 \times 2x \times  \frac{5}{2}  +  { (\frac{5}{2}) }^{2}  -   { (\frac{5}{2}) }^{2}  + 6 = 0 \\  =  >  {(2x -  \frac{5}{2}) }^{2}  -  \frac{1}{4}  = 0 \\  =  > {(2x -  \frac{5}{2}) }^{2} =  \frac{1}{4}  \\  =  > (2x -  \frac{5}{2})  =  \frac{1}{2}  \\  =  > 2x =  \frac{1}{2}  -  \frac{5}{2}  \\  =  > x =  \frac{ - 2}{2}

x = -1

Answered by Draxillus
8

Correct question :-

Factorise 2x² - 5x + 3 = 0 by completing the square method.

Solution :-

 2x^2\:-5x\:+\:3\:=\:0 \\ \\ Dividing\:both\:side\:by\:2 \\ \\ => \: x^2\:-\: \dfrac{5x}{2}\:+\: \dfrac{3}{2}\:=\:0 \\ \\ \\ x^2\:-\:2 \times  \dfrac{5x}{4}\:= \: - \dfrac{3}{2}\:

 Adding\:{(\dfrac{5}{4})}^2 \:to\:both\:sides \\ \\ \\ => \:x^2\:-\:2\times \dfrac{5x}{4}\: +  \: {(\dfrac{5}{4})}^2   \: = :\- \dfrac{3}{2}\:+\:{(\dfrac{5}{4})}^2 \\ \\ \\ {(x\:-\:   \dfrac{5}{4})}^2\:=\: \dfrac{1}{16} \\ \\ \\

 => {(x\:-\: \dfrac{5}{4})}^2\:=\: {( \dfrac{1}{4})}^2 \\ \\ => \: x\:- \dfrac{5}{4}\:=\: \dfrac{1}{4}\:or\: - \dfrac{1}{4} \\ \\ \\ => \: x\:=\: \dfrac{3}{2}\:or\:1

 \boxed{\green{Hence,\:x\:=\: \dfrac{3}{2}\:or\:x\:=\:1}}

Similar questions